Three-Dimensional Lifting-Surface Theory for an Annular Blade Row

Author(s):  
G. F. Homicz ◽  
J. A. Lordi

A lifting-surface analysis is presented for the steady, three-dimensional, compressible flow through an annular blade row. A kernel-function procedure is used to solve the linearized integral equation which relates the unknown blade loading to a specified camber line. The unknown loading is expanded in a finite series of prescribed loading functions which allows the required integrations to be performed analytically, leading to a great savings in computer time. Numerical results are reported for a range of solidities and hub-to-tip ratios; comparisons are made with both two-dimensional strip theory and other three-dimensional results.

Author(s):  
Hidekazu Kodama ◽  
Masanobu Namba

A lifting surface theory is developed to predict the unsteady three-dimensional aerodynamic characteristics for a rotating subsonic annular cascade of swept blades. A discrete element method is used to solve the integral equation for the unsteady blade loading. Numerical examples are presented to demonstrate effects of the sweep on the blade flutter and on the acoustic field generated by interaction of rotating blades with a convected sinusoidal gust. It is found that increasing the sweep results in decrease of the aerodynamic work on vibrating blades and also remarkable reduction of the modal acoustic power of lower radial orders for both forward and backward sweeps.


1987 ◽  
Vol 31 (03) ◽  
pp. 151-163
Author(s):  
J. Leclerc ◽  
P. Salaun

A new lifting-surface theory is developed for the computation of three-dimensional hydrodynamic pressures on thin structures in the presence of a free surface. Two interesting cases are treated: the steady case and the supercritical unsteady case. The theory is linearized and the problem is reduced to the solution of an integral equation where the unknown function is the pressure difference between the elements of the structure and the right-hand side the angle of attack. Forces and moments are presented in both the steady and unsteady cases. This theory allows the analysis of flutter and the study of steady drag and of the turn of ships.


1980 ◽  
Vol 22 (4) ◽  
pp. 161-173 ◽  
Author(s):  
J. H. Horlock

Three-dimensional flows through cascades of blades are studied, the blading being fully choked internally. Initially the two-dimensional flow through a ‘zero stagger, zero camber’ blade row, with subsonic entry and exit flow, is described. The radial flows are produced by radial variations in throat area, or by a variety of entry shear flows. Subsequently, the analysis is developed to describe similar fully choked flows through staggered blade rows, particularly the first rotating row of a transonic compressor.


1973 ◽  
Vol 17 (04) ◽  
pp. 196-207 ◽  
Author(s):  
S. Tsakonas ◽  
W. R. Jacobs ◽  
M. R. Ali

The mathematical model used in previous Davidson Laboratory adaptations of linearized unsteady lifting surface theory to marine propellers has been revised by removing the so-called "staircase" approximation of the blade wake and replacing it by an "exact" helicoidal blade wake. A new numerical procedure and program based on the present model have been developed to evaluate the steady and unsteady blade loading distributions, which are used to determine the bearing forces and moments. Systematic calculations of these forces and moments for a series of propellers show better agreement on the whole with experimental measurements than did the earlier calculations for the same series. In addition, the chordwise loading distributions are much smoother than obtained previously. However, the quantitative improvement must be weighed against the considerable increase in computer time over the old method.


1990 ◽  
Vol 112 (3) ◽  
pp. 411-417 ◽  
Author(s):  
H. Kodama ◽  
M. Namba

A lifting surface theory is developed to predict the unsteady three-dimensional aerodynamic characteristics for a rotating subsonic annular cascade of swept blades. A discrete element method is used to solve the integral equation for the unsteady blade loading. Numerical examples are presented to demonstrate effects of the sweep on the blade flutter and on the acoustic field generated by interaction of rotating blades with a convected sinusoidal gust. It is found that increasing the sweep results in decrease of the aerodynamic work on vibrating blades and also remarkable reduction of the modal acoustic power of lower radial orders for both forward and backward sweeps.


1988 ◽  
Vol 32 (04) ◽  
pp. 238-245
Author(s):  
Ming-Chung Fang

Strip theory for a single running ship is applied to predict the coupled motions of smallaterplane area twin-hull (SWATH) ships, with and without speed, in waves. The hydrodynamic coefficients, in cluding the interactions between two hulls, are analyzed in a twodimensional manner and an integral equation method is utilized. To obtain the exciting force the three-dimensional diffraction potential is temporarily maintained during the derivation and finally replaced by the two-dimensional one. Neglecting the surge motion, five modes motions are obtained. The validity of the present theoretical prediction of SWATH motions is well confirmed by the existing model experimental results even in a following sea at high speed. Artificial damping due to the fin and viscosity is tested and found to give improvement in the resonant region of motion.


Author(s):  
Hidekazu Kodama ◽  
Masanobu Namba

A lifting surface theory is developed to predict the unsteady three-dimensional aerodynamic characteristics for a rotating transonic annular cascade of swept blades. An improved method is used to solve the integral equation for the unsteady blade loading. Numerical examples are presented to demonstrate effects of the sweep on the blade flutter and on the acoustic field generated by interaction of rotating blades with a convected sinusoidal gust. It is found that, in the case of transonic rotors, the magnitude of total aerodynamic work due to the blade vibration is reduced at large sweep angles, however blade sweep is not beneficial for noise reduction.


Author(s):  
Ahmed Abdelwahab

Vaned diffusers have been used successfully as efficient and compact dynamic pressure recovery devices in industrial centrifugal compressor stages. Typically such diffusers consist of a cascade of two-dimensional blades distributed circumferentially at close proximity to the impeller exit. In this paper three low-solidity diffuser blade geometries are numerically investigated. The first geometry employs variable stagger stacking of similar blade sections along the blade span. The second employs linearly inclined stacking to generate blade lean along the diffuser span. The third geometry employs the conventional two-dimensional low-solidity diffuser geometry with no variable stagger or lean. The variable stagger blade arrangement has the potential of better aligning the diffuser leading edges with the highly non-uniform flow leaving the impeller. Both variable stagger and linearly leaned diffuser blade arrangements, however, have the effect of redistributing the blade loading and flow streamlines in the spanwise direction leading to improved efficiency and pressure recovery capacity of the diffuser. In this paper a description of the proposed diffuser geometries is presented. The results of Three-dimensional Navier-Stokes numerical simulations of the three centrifugal compressor arrangements are discussed. Comparisons between the performance of the two and three-dimensional diffuser blade geometries are presented. The comparisons indeed show that the variable stagger and leaned diffusers present an improvement in the diffuser operating range and pressure recovery capacity over the conventional two-dimensional diffuser geometry.


1970 ◽  
Vol 92 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Ramani Mani

An analysis is presented which treats the noise generation from an axial flow fan row by given forces including the effects of a moving medium. The linearization of Euler’s equations to yield tractable problems for fan noise is discussed. The three-dimensional problem is decomposed into several two-dimensional problems. Finally, full details are given of a two-dimensional analysis to predict the amounts of acoustic energy, at the blade passing frequency and its harmonics, radiated up and downstream of a blade row due to its interaction with a neighboring row.


1968 ◽  
Vol 12 (04) ◽  
pp. 286-301
Author(s):  
C. J. Henry

In this report a theoretical procedure is developed for the prediction of the dynamic response elastic or rigid body, of a hydrofoil-supported vehicle in the flying condition— to any prescribed transient or periodic disturbance. The procedure also yields the stability indices of the response, so that dynamic instabilities such as flutter can also be predicted. The unsteady hydrodynamic forces are introduced in the equations of motion for the elastic vehicle in terms of the indicia I pressure-response functions, which are de rived herein from lifting-surface theory. Thus, the predicted vehicle-response includes the effects of three-dimensional unsteady flow conditions at specified forward speed. The natural frequencies and elastic modes of vibration of the vehicle and foil system in the absence of hydrodynamic effects are presumed known. A numerical procedure is presented for the solution of the downwash integral equations relating the unknown indicial pressure distributions to the specified elastic-mode shapes. The procedure is based on use of the generalized-lift-operator technique together with the collocation method.


Sign in / Sign up

Export Citation Format

Share Document