scholarly journals ITI GT601: A New Approach to Vehicular Gas Turbine Power Unit Design

Author(s):  
G. D. Woodhouse

The Industrial Turbines International GT601 Engine has been designed and is currently being tested as a gas turbine power plant specifically intended for on-highway truck propulsion. The somewhat unique aeromechanical design reflects the uncompromising economic demands of this market in terms of reliability, performance, and cost. This paper describes some of the studies leading to the adoption of the medium-pressure recuperated cycle. The near-term goals of performance superiority relative to current diesels can be achieved with the all-metal version of this engine. The introduction of ceramic components into future high-temperature versions of the GT601 indicates supremacy over projected turbo-compound, adiabatic, bottoming cycle, and similar diesel engine developments projected for the late 1980s.

Energy ◽  
1991 ◽  
Vol 16 (1-2) ◽  
pp. 177-186 ◽  
Author(s):  
L.M. Lidsky ◽  
O.O. Lanning ◽  
J.E. Staudt ◽  
X.L. Van ◽  
H. Kaburaki ◽  
...  

Author(s):  
Timothy Griffin ◽  
Sven Gunnar Sundkvist ◽  
Knut A˚sen ◽  
Tor Bruun

The AZEP (Advanced Zero Emissions Power Plant) project addresses the development of a novel “zero emissions,” gas turbine-based, power generation process to reduce local and global CO2 emissions in the most cost-effective way. Preliminary process calculations indicate that the AZEP concept will result only in a loss of 2–5% efficiency, as compared to approximately 10% loss using conventional tail-end CO2 capture methods. Additionally, the concept allows the use of air-based gas turbine equipment and thus, eliminates the need for expensive development of new turbomachinery. The key to achieving these targets is the development of an integrated MCM-reactor, in which a) O2 is separated from air by use of a mixed-conductive membrane (MCM), b) combustion of natural gas occurs in an N2-free environment and c) the heat of combustion is transferred to the oxygen depleted air by a high temperature heat exchanger. This MCM reactor replaces the combustion chamber in a standard gas turbine power plant. The cost of removing CO2 from the combustion exhaust gas is significantly reduced, since this contains only CO2 and water vapor. The initial project phase is focused on the research and development of the major components of the MCM-reactor (air separation membrane, combustor and high temperature heat exchanger), the combination of these components into an integrated reactor, and subsequent scale-up for future integration in a gas turbine. Within the AZEP process combustion is carried out in a nearly stoichiometric natural gas/O2 mixture heavily diluted in CO2 and water vapor. The influence of this high exhaust gas dilution on the stability of natural gas combustion has been investigated, using lean-premix combustion technologies. Experiments have been performed both at atmospheric and high pressures (up to 15 bar), simulating the conditions found in the AZEP process. Preliminary tests have been performed on MCM modules under simulated gas turbine conditions. Additionally, preliminary reactor designs, incorporating MCM, heat exchanger and combustor have been made, based on the results of initial component testing. Techno-economic process calculations have been performed indicating the advantages of the AZEP process as compared to other proposed CO2-free gas turbine processes.


2005 ◽  
Vol 127 (1) ◽  
pp. 81-85 ◽  
Author(s):  
Timothy Griffin ◽  
Sven Gunnar Sundkvist ◽  
Knut A˚sen ◽  
Tor Bruun

The AZEP “advanced zero emissions power plant” project addresses the development of a novel “zero emissions,” gas turbine-based, power generation process to reduce local and global CO2 emissions in the most cost-effective way. Process calculations indicate that the AZEP concept will result only in a loss of about 4% points in efficiency including the pressurization of CO2 to 100 bar, as compared to approximately 10% loss using conventional tail-end CO2 capture methods. Additionally, the concept allows the use of air-based gas turbine equipment and, thus, eliminates the need for expensive development of new turbomachinery. The key to achieving these targets is the development of an integrated MCM-reactor in which (a) O2 is separated from air by use of a mixed-conductive membrane (MCM), (b) combustion of natural gas occurs in an N2-free environment, and (c) the heat of combustion is transferred to the oxygen-depleted air by a high temperature heat exchanger. This MCM-reactor replaces the combustion chamber in a standard gas turbine power plant. The cost of removing CO2 from the combustion exhaust gas is significantly reduced, since this contains only CO2 and water vapor. The initial project phase is focused on the research and development of the major components of the MCM-reactor (air separation membrane, combustor, and high temperature heat exchanger), the combination of these components into an integrated reactor, and subsequent scale-up for future integration in a gas turbine. Within the AZEP process combustion is carried out in a nearly stoichiometric natural gas/O2 mixture heavily diluted in CO2 and water vapor. The influence of this high exhaust gas dilution on the stability of natural gas combustion has been investigated, using lean-premix combustion technologies. Experiments have been performed both at atmospheric and high pressures (up to 15 bar), simulating the conditions found in the AZEP process. Preliminary tests have been performed on MCM modules under simulated gas turbine conditions. Additionally, preliminary reactor designs, incorporating MCM, heat exchanger, and combustor, have been made, based on the results of initial component testing. Techno-economic process calculations have been performed indicating the advantages of the AZEP process as compared to other proposed CO2-free gas turbine processes.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 705
Author(s):  
Thodsaphon Jansaengsuk ◽  
Mongkol Kaewbumrung ◽  
Wutthikrai Busayaporn ◽  
Jatuporn Thongsri

To solve the housing damage problem of a fractured compressor blade (CB) caused by an impact on the inner casing of a gas turbine in the seventh stage (from 15 stages), modifications of the trailing edge (TE) of the CB have been proposed, namely 6.5 mm curved cutting and a combination of 4 mm straight cutting with 6.5 mm curved cutting. The simulation results of the modifications in both aerodynamics variables Cl and Cd and the pressure ratio, including structural dynamics such as a normalized power spectrum, frequency, total deformation, equivalent stress, and the safety factor, found that 6.5 mm curved cutting could deliver the aerodynamics and structural dynamics similar to the original CB. This result also overcomes the previous work that proposed 5.0 mm straight cutting. This work also indicates that the operation of a CB gives uneven pressure and temperature, which get higher in the TE area. The slightly modified CB can present the difference in the properties of both the aerodynamics and the structural dynamics. Therefore, any modifications of the TE should be investigated for both properties simultaneously. Finally, the results from this work can be very useful information for the modification of the CB in the housing damage problem of the other rotating types of machinery in a gas turbine power plant.


2017 ◽  
Vol 115 ◽  
pp. 977-985 ◽  
Author(s):  
Thamir K. Ibrahim ◽  
Firdaus Basrawi ◽  
Omar I. Awad ◽  
Ahmed N. Abdullah ◽  
G. Najafi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document