scholarly journals Convective Heat Transfer in a Rotating Cylindrical Cavity

Author(s):  
J. M. Owen ◽  
H. S. Onur

In order to gain an understanding of the conditions inside air-cooled gas-turbine rotors, flow visualization, laser-doppler anemometry and heat-transfer measurements have been made in a rotating cavity with either an axial throughflow or a radial outflow of coolant. For the axial throughflow tests, a correlation has been obtained for the mean Nusselt number in terms of the cavity gap ratio, the axial Reynolds number and rotational Grashof number. For the radial outflow tests, velocity measurements are in good agreement with solutions of the linear (laminar and turbulent) Ekman layer equations, and flow visualization has revealed the destabilizing effect of buoyancy forces on the flow structure. The mean Nusselt numbers have been correlated, for the radial outflow case, over a wide range of gap ratios, coolant flow rates, rotational Reynolds numbers and Grashof numbers. As well as the three (forced convection) regimes established from previous experiments, a fourth (free convection) regime has been identified.

1983 ◽  
Vol 105 (2) ◽  
pp. 265-271 ◽  
Author(s):  
J. M. Owen ◽  
H. S. Onur

In order to gain an understanding of the conditions inside air-cooled, gas-turbine rotors, flow visualization, laser-doppler anemometry, and heat-transfer measurements have been made in a rotating cavity with either an axial throughflow or a radial outflow of coolant. For the axial throughflow tests, a correlation has been obtained for the mean Nusselt number in terms of the cavity gap ratio, the axial Reynolds number, and rotational Grashof number. For the radial outflow tests, velocity measurements are in good agreement with solutions of the linear (laminar and turbulent) Ekman layer equations, and flow visualization has revealed the destabilizing effect of buoyancy forces on the flow structure. The mean Nusselt numbers have been correlated, for the radial outflow case, over a wide range of gap ratios, coolant flow rates, rotational Reynolds numbers, and Grashof numbers. As well as the three (forced convection) regimes established from previous experiments, a fourth (free convection) regime has been identified.


This paper describes a combined theoretical and experimental investigation into the heat transfer from a disk rotating close to a stator with a radial outflow of coolant. Experimental results are obtained from a 762 mm diameter disk, rotating up to 4000 rev/min at axial clearances from 2 to 230 mm from a stator of the same diameter, with coolant flow rates up to 0.7 kg/s. Mean Nusselt numbers are presented for the free disk, the disk rotating close to an unshrouded stator with no coolant outflow, the disk rotating close to a shrouded and unshrouded stator with coolant outflow, and for the unshrouded stator itself. Numerical solutions of the turbulent boundary layer equations are in satisfactory agreement with the experimentally determined mean Nusselt numbers for the air-cooled disk over a wide range of conditions. At large ratios of mass flow rate/rotational speed the mean Nusselt numbers for the air-cooled disk are independent of rotation, and both the numerical solutions and experimental results become asymptotic to an approximate solution of the boundary layer equations.


2005 ◽  
Vol 128 (6) ◽  
pp. 557-563 ◽  
Author(s):  
Paul L. Sears ◽  
Libing Yang

Heat transfer coefficients were measured for a solution of surfactant drag-reducing additive in the entrance region of a uniformly heated horizontal cylindrical pipe with Reynolds numbers from 25,000 to 140,000 and temperatures from 30to70°C. In the absence of circumferential buoyancy effects, the measured Nusselt numbers were found to be in good agreement with theoretical results for laminar flow. Buoyancy effects, manifested as substantially higher Nusselt numbers, were seen in experiments carried out at high heat flux.


Author(s):  
Anil K. Tolpadi ◽  
Michael E. Crawford

The heat transfer and aerodynamic performance of turbine airfoils are greatly influenced by the gas side surface finish. In order to operate at higher efficiencies and to have reduced cooling requirements, airfoil designs require better surface finishing processes to create smoother surfaces. In this paper, three different cast airfoils were analyzed: the first airfoil was grit blasted and codep coated, the second airfoil was tumbled and aluminide coated, and the third airfoil was polished further. Each of these airfoils had different levels of roughness. The TEXSTAN boundary layer code was used to make predictions of the heat transfer along both the pressure and suction sides of all three airfoils. These predictions have been compared to corresponding heat transfer data reported earlier by Abuaf et al. (1997). The data were obtained over a wide range of Reynolds numbers simulating typical aircraft engine conditions. A three-parameter full-cone based roughness model was implemented in TEXSTAN and used for the predictions. The three parameters were the centerline average roughness, the cone height and the cone-to-cone pitch. The heat transfer coefficient predictions indicated good agreement with the data over most Reynolds numbers and for all airfoils-both pressure and suction sides. The transition location on the pressure side was well predicted for all airfoils; on the suction side, transition was well predicted at the higher Reynolds numbers but was computed to be somewhat early at the lower Reynolds numbers. Also, at lower Reynolds numbers, the heat transfer coefficients were not in very good agreement with the data on the suction side.


2000 ◽  
Vol 123 (2) ◽  
pp. 404-407 ◽  
Author(s):  
C. Cui ◽  
X. Y. Huang ◽  
C. Y. Liu

An experimental study was conducted on the heat transfer characteristics of flow through a porous channel with discrete heat sources on the upper wall. The temperatures along the heated channel wall were measured with different heat fluxes and the local Nusselt numbers were calculated at the different Reynolds numbers. The temperature distribution of the fluid inside the channel was also measured at several points. The experimental results were compared with that predicted by an analytical model using the Green’s integral over the discrete sources, and a good agreement between the two was obtained. The experimental results confirmed that the heat transfer would be more significant at leading edges of the strip heaters and at higher Reynolds numbers.


1990 ◽  
Author(s):  
A. P. Morse ◽  
C. L. Ong

The paper presents finite-difference predictions for the convective heat transfer in symmetrically-heated rotating cavities subjected to a radial outflow of cooling air. An elliptic calculation procedure has been used, with the turbulent fluxes estimated by means of a low Reynolds number k-ε model and the familiar ‘turbulence Prandtl number’ concept. The predictions extend to rotational Reynolds numbers of 3.7 × 106 and encompass cases where the disc temperatures may be increasing, constant or decreasing in the radial direction. It is found that the turbulence model leads to predictions of the local and average Nusselt numbers for both discs which are generally within ± 10% of the values from published experimental data, although there appear to be larger systematic errors for the upstream disc than for the downstream disc. It is concluded that the calculations are of sufficient accuracy for engineering design purposes, but that improvements could be brought about by further optimization of the turbulence model.


1997 ◽  
Vol 119 (1) ◽  
pp. 61-67 ◽  
Author(s):  
J.-X. Chen ◽  
X. Gan ◽  
J. M. Owen

A superposed radial outflow of air is used to cool two disks that are rotating at equal and opposite speeds at rotational Reynolds numbers up to 1.2 × 106. One disk, which is heated up to 100°C, is instrumented with thermocouples and fluxmeters; the other disk, which is unheated, is made from transparent polycarbonate to allow the measurement of velocity using an LDA system. Measured Nusselt numbers and velocities are compared with computations made using an axisymmetric elliptic solver with a low-Reynolds-number k–ε turbulence model. Over the range of flow rates and rotational speeds tested, agreement between the computations and measurements is mainly good. As suggested by the Reynolds analogy, the Nusselt numbers for contrarotating disks increase strongly with rotational speed and weakly with flow rate; they are lower than the values obtained under equivalent conditions in a rotor–stator system.


1988 ◽  
Vol 110 (1) ◽  
pp. 70-77 ◽  
Author(s):  
P. R. Farthing ◽  
J. M. Owen

Flow visualization and heat transfer measurements have been made in a cavity comprising two nonplane disks of 762 mm diameter and a peripheral shroud, all of which could be rotated up to 2000 rpm. “Cobs,” made from a lightweight foam material and shaped to model the geometry of turbine disks, were attached to the center of each disk. Cooling air at flow rates up to 0.1 kg/s entered the cavity through the center of the “upstream” disk and left via holes in the shroud. The flow structure was found to be similar to that observed in earlier tests for the plane-disk case: a source region, Ekman layers, sink layer, and interior core were observed by flow visualization. Providing the source region did not fill the entire cavity, solutions of the turbulent integral boundary-layer equations provided a reasonable approximation to the Nusselt numbers measured on the heated “downstream” disk.


1994 ◽  
Author(s):  
Jian-Xin Chen ◽  
Xiaopeng Gan ◽  
J. Michael Owen

This paper describes a combined experimental and computational study of the heat transfer from an electrically-heated disc rotating close to an unheated stator. A radial outflow of cooling air was used to remove heat from the disc, and local Nusselt numbers were measured, using fluxmeters at seven radial locations, for nondimensional flow rates up to C = 9680 and rotational Reynolds numbers up to Reφ = 1.2 × 106. Computations were carried out using an elliptic solver with a low-Reynolds-number k-ε turbulence model, and the agreement between the measured and computed velocities and Nusselt numbers was mainly good.


1977 ◽  
Vol 19 (4) ◽  
pp. 175-187 ◽  
Author(s):  
J. M. Owen ◽  
E. D. Bilimoria

Nusselt numbers are measured on the heated disc of a rotating cylindrical cavity, with either an axial throughflow or a radial outflow of coolant, over a range of gap ratios, 0.13 ≤ G ≤ 0.4, flow rates up to Re z ≈ 1.8 × 105, rotational speeds up to Reø ≈ 2.5 × 106, and Grashof numbers up to Gr ≈ 1.7 times 1012. For the axial throughflow case, dramatic increases in the values of local Nusselt numbers are observed at certain Rossby numbers; these increases are consistent with the vortex breakdown observed on a separate, isothermal, laser Doppler anemometry (L.D.A.) rig For the radial outflow case, the mean Nusselt numbers show three separate régimes which depend on Re z and Reø but are only weakly affected by G. These three régimes have been identified on the L.D.A. rig and are associated with the presence or absence of Ekman layers on the rotating discs.


Sign in / Sign up

Export Citation Format

Share Document