Predictions of the Effect of Roughness on Heat Transfer From Turbine Airfoils

Author(s):  
Anil K. Tolpadi ◽  
Michael E. Crawford

The heat transfer and aerodynamic performance of turbine airfoils are greatly influenced by the gas side surface finish. In order to operate at higher efficiencies and to have reduced cooling requirements, airfoil designs require better surface finishing processes to create smoother surfaces. In this paper, three different cast airfoils were analyzed: the first airfoil was grit blasted and codep coated, the second airfoil was tumbled and aluminide coated, and the third airfoil was polished further. Each of these airfoils had different levels of roughness. The TEXSTAN boundary layer code was used to make predictions of the heat transfer along both the pressure and suction sides of all three airfoils. These predictions have been compared to corresponding heat transfer data reported earlier by Abuaf et al. (1997). The data were obtained over a wide range of Reynolds numbers simulating typical aircraft engine conditions. A three-parameter full-cone based roughness model was implemented in TEXSTAN and used for the predictions. The three parameters were the centerline average roughness, the cone height and the cone-to-cone pitch. The heat transfer coefficient predictions indicated good agreement with the data over most Reynolds numbers and for all airfoils-both pressure and suction sides. The transition location on the pressure side was well predicted for all airfoils; on the suction side, transition was well predicted at the higher Reynolds numbers but was computed to be somewhat early at the lower Reynolds numbers. Also, at lower Reynolds numbers, the heat transfer coefficients were not in very good agreement with the data on the suction side.

Author(s):  
N. Abuaf ◽  
R. S. Bunker ◽  
C. P. Lee

Aerodynamic flow path losses and turbine airfoil gas side heat transfer are strongly affected by the gas side surface finish. For high aero efficiencies and reduced cooling requirements, airfoil designs dictate extensive surface finishing processes to produce smooth surfaces and enhance engine performance. The achievement of these requirements incurs additional manufacturing finishing costs over less strict requirements. The present work quantifies the heat transfer (and aero) performance differences of three cast airfoils with varying degrees of surface finish treatment. An airfoil which was grit blast and Codep coated produced an average roughness of 2.33 μm, one which was grit blast, tumbled, and Aluminide coated produced 1.03 μm roughness, and another which received further post coating polishing produced 0.81 μm roughness. Local heat transfer coefficients were experimentally measured with a transient technique in a linear cascade with a wide range of flow Reynolds numbers covering typical engine conditions. The measured heat transfer coefficients were used with a rough surface Reynolds Analogy to determine the local skin friction coefficients, from which the drag forces and aero efficiencies were calculated. Results show that tumbling and polishing reduce the average roughness and improve performance. The largest differences are observed from the rumbling process, with smaller improvements realized from polishing.


1998 ◽  
Vol 120 (3) ◽  
pp. 522-529 ◽  
Author(s):  
N. Abuaf ◽  
R. S. Bunker ◽  
C. P. Lee

Aerodynamic flow path losses and turbine airfoil gas side heat transfer are strongly affected by the gas side surface finish. For high aero efficiencies and reduced cooling requirements, airfoil designs dictate extensive surface finishing processes to produce smooth surfaces and enhance engine performance. The achievement of these requirements incurs additional manufacturing finishing costs over less strict requirements. The present work quantifies the heat transfer (and aero) performance differences of three cast airfoils with varying degrees of surface finish treatment. An airfoil, that was grit blast and Codep coated, produced an average roughness of 2.33 μm, one that was grit blast, tumbled, and aluminide coated produced 1.03 μm roughness, and another that received further postcoating polishing produced 0.81 μm roughness. Local heat transfer coefficients were experimentally measured with a transient technique in a linear cascade with a wide range of flow Reynolds numbers covering typical engine conditions. The measured heat transfer coefficients were used with a rough surface Reynolds analogy to determine the local skin friction coefficients, from which the drag forces and aero efficiencies were calculated. Results show that tumbling and polishing reduce the average roughness and improve performance. The largest differences are observed from the tumbling process, with smaller improvements realized from polishing.


2005 ◽  
Vol 128 (6) ◽  
pp. 557-563 ◽  
Author(s):  
Paul L. Sears ◽  
Libing Yang

Heat transfer coefficients were measured for a solution of surfactant drag-reducing additive in the entrance region of a uniformly heated horizontal cylindrical pipe with Reynolds numbers from 25,000 to 140,000 and temperatures from 30to70°C. In the absence of circumferential buoyancy effects, the measured Nusselt numbers were found to be in good agreement with theoretical results for laminar flow. Buoyancy effects, manifested as substantially higher Nusselt numbers, were seen in experiments carried out at high heat flux.


Author(s):  
Shang-Feng Yang ◽  
Je-Chin Han ◽  
Salam Azad ◽  
Ching-Pang Lee

This paper experimentally investigates the effect of rotation on heat transfer in typical turbine blade serpentine coolant passage with ribbed walls at low Mach numbers. To achieve the low Mach number (around 0.01) condition, pressurized Freon R-134a vapor is utilized as the working fluid. The flow in the first passage is radial outward, after the 180 deg tip turn the flow is radial inward to the second passage, and after the 180 deg hub turn the flow is radial outward to the third passage. The effects of rotation on the heat transfer coefficients were investigated at rotation numbers up to 0.6 and Reynolds numbers from 30,000 to 70,000. Heat transfer coefficients were measured using the thermocouples-copper-plate-heater regional average method. Heat transfer results are obtained over a wide range of Reynolds numbers and rotation numbers. An increase in heat transfer rates due to rotation is observed in radially outward passes; a reduction in heat transfer rate is observed in the radially inward pass. Regional heat transfer coefficients are correlated with Reynolds numbers for nonrotation and with rotation numbers for rotating condition, respectively. The results can be useful for understanding real rotor blade coolant passage heat transfer under low Mach number, medium–high Reynolds number, and high rotation number conditions.


Author(s):  
A. Hoffs ◽  
U. Drost ◽  
A. Bölcs

This paper presents heat transfer measurements on a turbine airfoil in a linear cascade at various exit Reynolds and Mach numbers ranging from 3.2e5 to 1.6e6 and 0.2 to 0.8, respectively, which have been conducted with the transient liquid crystal technique. Two series were performed at turbulence intensities of 5.5% and 10%, the latter being created by a squared-bar mesh placed 10 meshsizes upstream of the turbine airfoils. While normally polished liquid crystals were used additional experiments were done at the high turbulence intensity with naturally rough liquid crystals. All measurements indicate a gradual increase in heat transfer and an upstream shift of the laminar-to-turbulent transition with increasing Reynolds number and turbulence intensity. The leading edge heat transfer agrees well with correlations if the turbulence length scale is taken into account. The measurements conducted with rough liquid crystals show an earlier transition on the suction side. Calculations with a two-dimensional boundary layer code agree well with the measurements.


Author(s):  
T. Zoric ◽  
I. Popovic ◽  
S. A. Sjolander ◽  
T. Praisner ◽  
E. Grover

At the 2006 ASME-IGTI Turbo-Expo, low-speed cascade results were presented for the midspan aerodynamic behaviour of a family of three highly loaded low-pressure (LP) turbine airfoils operating over a wide range of Reynolds numbers (25,000 to 150,000 based on the axial chord and inlet velocity), and for values of freestream turbulence intensity of 1.5% and 4%. All three airfoils have the same design inlet and outlet flow angles. The baseline cascade has a Zweifel coefficient of 1.08 and the two additional blade rows have values of 1.37. The new, more highly-loaded blade rows differ mainly in their loading distributions: one is front-loaded while the other is aft-loaded. The new front-loaded airfoil was found to have particularly attractive profile performance. Despite its exceptionally high value of Zweifel coefficient, it was found to be free of a separation bubble on its suction side at Reynolds numbers as low as 50,000, and this was reflected in very good profile loss behaviour. However, it was also noted in the earlier paper that the choice of a particular loading level and loading distribution would be influenced by more than its profile performance at design incidence. The present two-part paper extends the midspan aerodynamic comparison of the three airfoils to the secondary flow performance. The first part of the paper discusses both the profile and secondary flow performance of the three cascades at their design Reynolds number of 80,000 (or ∼ 125,000 based on exit velocity) for two freestream turbulence intensities of 1.5% and 4%. The secondary flow behaviour was determined from detailed flowfield measurements made at 40% axial chord downstream of the trailing edge using a seven-hole pressure probe. In addition to providing total pressure losses, the seven-hole probe measurements were also processed to give the downstream vorticity distributions. As has been found in other secondary flow investigations in turbine cascades, the present front-loaded airfoil showed higher secondary losses than the aft-loaded airfoil with the same value of Zweifel coefficient.


Author(s):  
J. M. Owen ◽  
H. S. Onur

In order to gain an understanding of the conditions inside air-cooled gas-turbine rotors, flow visualization, laser-doppler anemometry and heat-transfer measurements have been made in a rotating cavity with either an axial throughflow or a radial outflow of coolant. For the axial throughflow tests, a correlation has been obtained for the mean Nusselt number in terms of the cavity gap ratio, the axial Reynolds number and rotational Grashof number. For the radial outflow tests, velocity measurements are in good agreement with solutions of the linear (laminar and turbulent) Ekman layer equations, and flow visualization has revealed the destabilizing effect of buoyancy forces on the flow structure. The mean Nusselt numbers have been correlated, for the radial outflow case, over a wide range of gap ratios, coolant flow rates, rotational Reynolds numbers and Grashof numbers. As well as the three (forced convection) regimes established from previous experiments, a fourth (free convection) regime has been identified.


1983 ◽  
Vol 105 (2) ◽  
pp. 265-271 ◽  
Author(s):  
J. M. Owen ◽  
H. S. Onur

In order to gain an understanding of the conditions inside air-cooled, gas-turbine rotors, flow visualization, laser-doppler anemometry, and heat-transfer measurements have been made in a rotating cavity with either an axial throughflow or a radial outflow of coolant. For the axial throughflow tests, a correlation has been obtained for the mean Nusselt number in terms of the cavity gap ratio, the axial Reynolds number, and rotational Grashof number. For the radial outflow tests, velocity measurements are in good agreement with solutions of the linear (laminar and turbulent) Ekman layer equations, and flow visualization has revealed the destabilizing effect of buoyancy forces on the flow structure. The mean Nusselt numbers have been correlated, for the radial outflow case, over a wide range of gap ratios, coolant flow rates, rotational Reynolds numbers, and Grashof numbers. As well as the three (forced convection) regimes established from previous experiments, a fourth (free convection) regime has been identified.


Author(s):  
Dong Hyun Lee ◽  
Dong-Ho Rhee ◽  
Hyung Hee Cho ◽  
Hee-Koo Moon

The present research investigates the heat transfer characteristics in an equilateral triangular channel to simulate the leading edge cooling passage of a gas turbine blade. The experiments are conducted for the stationary and rotating ribbed channel with three different attack angles (45°, 90° and 135°). Square ribs are installed in a staggered manner on the pressure and suction side surfaces of the channel. The rib height to channel hydraulic diameter ratio (e/Dh) is 0.079 and the rib-to-rib pitch (p) is 8 times of the rib height. To measure regional-averaged heat transfer coefficients in the channel, two rows of copper blocks with heaters are installed on each surface. The rotation number ranges from 0.0 to 0.1 for the fixed Reynolds number of 10,000. Inlet coolant-to-surface density ratio is about 0.2. For the channel with 90° ribs, the heat transfer rates of all regions have similar values for stationary case. However, for the rotating channel, heat transfer coefficients on the pressure side surface are significantly increased while the suction side surface has quite low heat transfer coefficients due to a single rotating secondary flow induced by Coriolis force. For the channel with angled rib arrangements, a pair of counter-rotating vortices is induced by the angled rib arrangements. High heat transfer coefficients are obtained on the regions near the inner wall for 45° angled ribbed channel and near the leading edge for the 135° angled ribbed channel. The heat transfer coefficients in rotating channel with angled ribs are almost the same as those of stationary case for the tested conditions because the secondary flow dominates the heat transfer. The channel with angled ribs consistently yields better thermal performance than the transverse ribbed channel for the test conditions of the present study.


2005 ◽  
Vol 128 (2) ◽  
pp. 310-320 ◽  
Author(s):  
M. E. Taslim ◽  
A. Khanicheh

This experimental investigation deals with impingement on the leading edge of an airfoil with and without showerhead film holes and its effects on heat transfer coefficients on the airfoil nose area as well as the pressure and suction side areas. a comparison between the experimental and numerical results are also made. the tests were run for a range of flow conditions pertinent to common practice and at an elevated range of jet Reynolds numbers (8000–48,000). The major conclusions of this study were: (a) The presence of showerhead film holes along the leading edge enhances the internal impingement heat transfer coefficients significantly, and (b) while the numerical predictions of impingement heat transfer coefficients for the no-showerhead case were in good agreement with the measured values, the case with showerhead flow was under-predicted by as much as 30% indicating a need for a more elaborate turbulence modeling.


Sign in / Sign up

Export Citation Format

Share Document