The Impact of Microprocessors on Rotating Machinery Data Acquisition and Diagnostic Information Systems

Author(s):  
R. G. Harker ◽  
W. E. Cronquist

Traditionally, vibration monitoring and protection equipment has been totally separate from the diagnostic and data acquisition equipment as used for rotating machinery information systems. Application oriented utilization of multiple microprocessors in a distributed processing system can virtually eliminate this artificial barrier. The design philosophy, block diagram, and operating results obtained from actual field-installed units will be presented. In addition, its use with a central Host Processor computer based total plant rotating machinery information system will be discussed.

Author(s):  
Clifford F. Ash

Rapidly increasing fuel costs, the increasing complexity of the new engines now available, along with the inaccuracies, inefficiencies and long test cycles inherent in manual testing push the cost of engine testing to unnecessary levels. One promising avenue of relief is the automation of gas turbine testing through the use of real-time computer data acquisition and processing systems. Remarkable progress has been made in the area of closed-loop or fully automatic operation of the test process from start-up using various programmable steps, recording results as dictated by the test procedure, controlling operation and a safe engine shut down. This paper discusses the successful application of a real-time computer system with both closed and open-loop capabilities. This particular system called “ADAPS™” (Automatic Data Acquisition and Processing System) handled its first 3,000 hours of engine operation without a single hardware or software interruption. Savings in manpower alone in that period was nearly 18,000 man-hours.


1995 ◽  
Vol 1 (3-4) ◽  
pp. 237-266 ◽  
Author(s):  
Agnes Muszynska

This paper outlines rotating machinery malfunction diagnostics using vibration data in correlation with operational process data. The advantages of vibration monitoring systems as a part of preventive/predictive maintenance programs are emphasized. After presenting basic principles of machinery diagnostics, several specific malfunction symptoms supported by simple mathematical models are given. These malfunctions include unbalance, excessive radial load, rotor-to-stator rubbing, fluid-induced vibrations, loose stationary and rotating parts, coupled torsional/lateral vibration excitation, and rotor cracking. The experimental results and actual field data illustrate the rotor vibration responses for individual malfunctions. Application of synchronous and nonsynchronous perturbation testing used for identification of basic dynamic characteristics of rotors is presented. Future advancements in vibration monitoring and diagnostics of rotating machinery health are discussed. In the Appendix, basic instrumentation for machine monitoring is outlined.


1990 ◽  
Vol 51 (C2) ◽  
pp. C2-939-C2-942 ◽  
Author(s):  
N. DINER ◽  
A. WEILL ◽  
J. Y. COAIL ◽  
J. M. COUDEVILLE

Author(s):  
Mihail Zver'kov

To the article the results of the theoretical and experimental researches are given on questions of estimates of the dynamic rate effect of raindrop impact on soil. The aim of this work was to analyze the current methods to determine the rate of artificial rain pressure on the soil for the assessment of splash erosion. There are the developed author’s method for calculation the pressure of artificial rain on the soil and the assessment of splash erosion. The study aims to the justification of evaluation methods and the obtaining of quantitative characteristics, prevention and elimination of accelerated (anthropogenic) erosion, the creation and the realization of the required erosion control measures. The paper considers the question of determining the pressure of artificial rain on the soil. At the moment of raindrops impact, there is the tension in the soil, which is called vertical effective pressure. It is noted that the impact of rain drops in the soil there are stresses called vertical effective pressure. The equation for calculation of vertical effective pressure is proposed in this study using the known spectrum of raindrops. Effective pressure was 1.4 Pa for the artificial rain by sprinkler machine «Fregat» and 5.9 Pa for long distance sprinkler DD-30. The article deals with a block diagram of the sequence for determining the effective pressure of rain drops on the soil. This diagram was created by the author’s method of calculation of the effective pressure of rain drops on the soil. The need for an integrated approach to the description of the artificial rain impact on the soil is noted. Various parameters characterizing drop erosion are considered. There are data about the mass of splashed soil in the irrigation of various irrigation machinery and installations. For example, the rate (mass) of splashed soil was 0.28…0.78 t/ha under irrigation sprinkler apparatus RACO 4260–55/701C in the conditions of the Ryazan region. The method allows examining the environmental impact of sprinkler techniques for analyzes of the pressure, caused by raindrops, on the soil. It can also be useful in determining the irrigation rate before the runoff for different types of sprinkler equipment and soil conditions.


Author(s):  
Nicholas Goodman ◽  
Brian J Leege ◽  
Peter E Johnson

Exposing students to hands-on experiments has been a common approach to illustrating complex physical phenomena that have been otherwise modelled solely mathematically. Compressible, isentropic flow in a duct is an example of such a phenomenon, and it is often demonstrated via a de Laval nozzle experiment. We have improved an existing converging/diverging nozzle experiment so that students can modify the location of the normal shock that develops in the diverging portion to better understand the relationship between the shock and the pressure. We have also improved the data acquisition system for this experiment and explained how visualisation of the standing shock is now possible. The results of the updated system demonstrate that the accuracy of the isentropic flow characteristics has not been lost. Through pre- and post-laboratory quizzes, we show the impact on student learning as well.


1989 ◽  
Vol 24 (9) ◽  
pp. 66-71
Author(s):  
Z. Defu ◽  
Y. Peigen ◽  
S. Zhongxiu

Sign in / Sign up

Export Citation Format

Share Document