Low-Solidity Tandem-Cascade Diffusers for Wide-Flow-Range Centrifugal Blowers

Author(s):  
Yasutoshi Senoo ◽  
Hiroshi Hayami ◽  
Hironobu Ueki

The pressure recovery of a low-solidity circular cascade diffuser of a centrifugal blower was predicted by a simple method combining a theory of circular cascade diffusers and that of vaneless diffusers and it was compared with a series of experiments. Furthermore the stall limit of the diffuser was studied. In order to improve the performance further, a series of tandem-cascade diffusers were tested. In these diffusers, the front row of the cascade was designed for a small flow rate while the rear row of the cascade was designed for a large flow rate so that the tandem cascade would accomplish good pressure recovery in a wide range of flow rate. Experimental results showed that the operating range was as wide as that of a vaneless diffuser and the pressure recovery was excellent at a small flow rate while it was somewhat better than that in a vaneless diffuser at a large flow rate.

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Hengxuan Luan ◽  
Liyuan Weng ◽  
Ranhui Liu ◽  
Yuanzhong Luan ◽  
Dongmin Li

This paper describes the investigations performed to better understand two-stage rotor speed matching in a contrarotating fan. In addition, this study develops a comprehensive measuring and communication system for a contrarotating fan using ZigBee network. The investigation method is based on three-dimensional RANS simulations; the RANS equations are solved by the numerical method in conjunction with a SST turbulence model. A wireless measurement system using big data method is first designed, and then a comparison is done with experimental measurements to outline the capacity of the numerical method. The results show that when contrarotating fan worked under designed speed, performance of two-stages rotors could not be matched as the designed working condition was deviated. Rotor 1 had huge influences on flow rate characteristics of a contrarotating fan. Rotor 2 was influenced by flow rates significantly. Under large flow rate condition, the power capability of rotor 2 became very weak; under working small flow rate condition, overloading would take place to class II motor. In order to solve the performance mismatch between two stages of CRF under nondesigned working conditions, under small flow rate condition, the priority shall be given to increase of the speed of rotor 1, while the speed of rotor 2 shall be reduced appropriately; under large flow rate condition, the speed of rotor 1 shall be reduced and the speed of rotor 2 shall be increased at the same time.


Author(s):  
Daisaku Sakaguchi ◽  
Hironobu Ueki ◽  
Masahiro Ishida ◽  
Hiroshi Hayami

Low solidity circular cascade diffuser abbreviated by LSD was proposed by Senoo et al. showing a high blade loading or a high lift coefficient without stall even under small flow rate conditions. These high performances were achieved by that the flow separation on the suction surface of the LSD blade was successfully suppressed by the secondary flow formed along the side walls. The higher performance of the LSD was achieved in both pressure recovery and operating range by adopting the tandem cascade because the front blade of the tandem cascade was designed suitably for small flow rates while the rear blade of the tandem cascade was designed suitably for large flow rates. In order to clarify the reason why the tandem cascade could achieve a high pressure recovery in a wide range of flow rate, the flow in the LSD with the tandem cascade is analyzed numerically in the present study by using the commercial CFD code of ANSYS-CFX 13.0. The behavior of the secondary flow is compared between the cases with the single cascade and the tandem one. It is found that the high blade loading of the front blade is achieved at the small flow rate by formation of the favorable secondary flow which suppresses the flow separation on suction surface of the front blade, and the flow separation on pressure surface of the front blade appeared at the design flow rate can be suppressed by the accelerated flow in the gap between the trailing edge of the front blade and the leading edge of the rear blade, resulting in the positive lift coefficient in spite of a large negative angle of attack.


Author(s):  
Masahiro Ishida ◽  
Daisaku Sakaguchi ◽  
Hironobu Ueki

An optimization of the inlet ring groove arrangement has been pursued in the present study for obtaining better impeller characteristics and a wider operation range at both small and large flow rates in a high specific speed type centrifugal impeller with inducer. The effects of the shape parameters with respect to the inlet ring groove on the impeller characteristic and the flow incidence were analyzed mainly based on numerical simulations, but also compared to the experimental results. At small flow rates, a significant improvement in the impeller characteristic is achieved due to reduction in the excessive-positive flow incidence by optimizing both location and width of the rear groove near the inducer tip throat. On the other hand, the impeller characteristic is improved at large flow rates by implementing the corner radius at the rear groove edge and by placing another front ring groove in the suction pipe. As a result, by the optimized configuration of the front and rear ring grooves, the unstable flow range of the test impeller can be reduced by about 50% without deterioration of the impeller characteristic even at the 125% flow rate.


2001 ◽  
pp. 1436-1439 ◽  
Author(s):  
M. Ashauer ◽  
H. Scholz ◽  
R. Briegel ◽  
H. Sandmaier ◽  
W. Lang

1976 ◽  
pp. 195-218 ◽  
Author(s):  
Fred Moreno ◽  
Dale Blann

Author(s):  
Zunqiang Fan ◽  
Jianfang Liu ◽  
Jingshi Dong ◽  
Jianqiao Li ◽  
Bin Jiang

2008 ◽  
Vol 74 (742) ◽  
pp. 1270-1277
Author(s):  
Fuminori MATSUYAMA ◽  
Michio SADATOMI ◽  
Akimaro KAWAHARA ◽  
Kentarou FUKAMACHI

2010 ◽  
Vol 22 (3) ◽  
pp. 333-340 ◽  
Author(s):  
Toshiya Watanabe ◽  
◽  
Tomokazu Inayama ◽  
Takeo Oomichi

A small capacity servo valve was developed for a small size water hydraulic manipulator, focusing the saving energy. The new servo valve optimizes the machines small flow rate use, makes the stroke longer for wideband use, reduces leakage and makes control easier. The test and evaluation of the servo valve was conducted by examining flow rate characteristics, leakage characteristics and responsibility. The flow rate and leak rate of the servo valve shows to be the same as the oil hydraulic servo valve, while the step and frequency response show good controllability for the water hydraulic manipulator.


Sign in / Sign up

Export Citation Format

Share Document