scholarly journals Comparison of Predicted and Experimental External Heat Transfer Around a Film Cooled Cylinder in Crossflow

Author(s):  
Francis S. Stepka ◽  
Raymond E. Gaugler

Calculations were made of the film cooling provided by rows of holes around the circumference of a cylinder in crossflow and the results were compared to experimental data obtained from a NASA grant to Purdue University. The calculations and experimental data were for conditions that simulate most of those that are typical of air cooled turbine vane leading edges. Injection was from single and multiple rows of holes located at different angular locations from the stagnation line. The holes in the rows were angled normal to the flow direction and at a 25 degree angle to the cylinder wall. The calculations and experimental data were for several constant values of blowing ratios for all rows and for different blowing ratios for each row, representing a simulation of a common coolant plenum supply to multiple rows of holes. The calculations were made using a finite difference boundary layer code, STAN5, developed under NASA contract with Stanford University and modified at the NASA Lewis Research Center. Contrary to initial expectations that injection would trip the boundary layer flow into the turbulent regime, the results indicated that the high free stream acceleration apparently kept the flow laminar for holes in the first 45 degrees past stagnation. The trend in Stanton number reduction due to coolant injection was predicted with generally good agreement at the lower blowing rates, but for multiple rows of holes, agreement was poor beyond the first row.

2019 ◽  
Vol XVI (2) ◽  
pp. 13-22
Author(s):  
Muhammad Ehtisham Siddiqui

Three-dimensional boundary-layer flow is well known for its abrupt and sharp transition from laminar to turbulent regime. The presented study is a first attempt to achieve the target of delaying the natural transition to turbulence. The behaviour of two different shaped and sized stationary disturbances (in the laboratory frame) on the rotating-disk boundary layer flow is investigated. These disturbances are placed at dimensionless radial location (Rf = 340) which lies within the convectively unstable zone over a rotating-disk. Mean velocity profiles were measured using constant-temperature hot-wire anemometry. By careful analysis of experimental data, the instability of these disturbance wakes and its estimated orientation within the boundary-layer were investigated.


Author(s):  
Longxin Zhang ◽  
Shaowen Chen ◽  
Hao Xu ◽  
Jun Ding ◽  
Songtao Wang

Compared with suction slots, suction holes are (1) flexible in distribution; (2) alterable in size; (3) easy to fabricate and (4) high in strength. In this paper, the numerical and experimental studies for a high turning compressor cascade with suction air removed by using suction holes in the end-wall at a low Mach numbers are carried out. The main objective of the investigation is to study the influence of different suction distributions on the aerodynamic performance of the compressor cascade and to find a better compound suction scheme. A numerical model was first made and validated by comparing with the experimental results. The computed flow visualization and exit parameter distribution showed a good agreement with experimental data. Second, the model was then used to simulate the influence of different suction distributions on the aerodynamic performance of the compressor cascade. A better compound suction scheme was obtained by summarizing numerical results and tested in a low speed wind tunnel. As a result, the compound suction scheme can be used to significantly improve the performance of the compressor cascade because the corner separation gets further suppressed.


Author(s):  
Pingfan He ◽  
Dragos Licu ◽  
Martha Salcudean ◽  
Ian S. Gartshore

The effect of varying coolant density on film cooling effectiveness for a turbine blade-model was numerically investigated and compared with experimental data. This model had a semi-circular leading edge with four rows of laterally-inclined film cooling orifices positioned symmetrically about the stagnation line. A curvilinear coordinate-based CFD code was developed and used for the numerical investigation. The code used a domain segmentation strategy in conjunction with general curvilinear grids to model the complex blade configuration. A multigrid method was used to accelerate the convergence rate. The time-averaged, variable-density, Navier-Stokes equations together with the energy or scalar equation were solved. Turbulence closure was attained by the standard k–ε model with a near-wall k model. Either air or CO2 was used as coolant in three cases of injection through single rows and alternatively staggered double raws of holes. Two different blowing rates were investigated in each case and compared with experimental data. The experimental results were obtained using a wind tunnel model, and the mass/heat analogy was used to determine the film cooling effectiveness. The higher density of the carbon dioxide coolant (approximately 1.5 times the density of air) in the isothermal mass injection experiments, was used to simulate the effects of injection of a colder air in the corresponding adiabatic heat transfer situation. Good agreement between calculated and measured film cooling effectiveness was found for low blowing ratio M ≤ 0.5 and the effect of density was not significant. At higher blowing ratio M > 1 the calculations consistently overpredict the measured values of film cooling effectiveness.


1978 ◽  
Vol 33 (7) ◽  
pp. 749-760 ◽  
Author(s):  
G. E. J. Eggermont ◽  
P. W. Hermans ◽  
L. J. F. Hermans ◽  
H. F. P. Knaap ◽  
J. J. M. Beenakker

In a rarefied polyatomic gas streaming through a rectangular channel, an external magnetic field produces a heat flux perpendicular to the flow direction. Experiments on this “viscom agnetic heat flux” have been performed for CO, N2, CH4 and HD at room temperature, with different orientations of the magnetic field. Such measurements enable one to separate the boundary layer contribution from the purely bulk contribution by means of the theory recently developed by Vestner. Very good agreement is found between the experimentally determined bulk contribution and the theoretical Burnett value for CO, N2 and CH4 , yet the behavior of HD is found to be anomalous.


1968 ◽  
Vol 10 (5) ◽  
pp. 426-433 ◽  
Author(s):  
F. C. Lockwood

The momentum equation is solved numerically for a suggested ramp variation of the Prandtl mixing length across an equilibrium-turbulent boundary layer. The predictions of several important boundary-layer functions are compared with the equilibrium experimental data. Comparisons are also made with some recent universal recommendations for turbulent boundary layers since the equilibrium experimental data are limited. Good agreement is found between the predictions, the experimental data, and the recommendations.


1974 ◽  
Vol 16 (2) ◽  
pp. 71-78 ◽  
Author(s):  
W. K. Allan ◽  
V. Sharma

Experimental data for two-dimensional, low-speed, turbulent boundary layer flow has been used to verify the description of mean-velocity distributions proposed by Allan and to re-evaluate the entrainment function. The independence of pressure gradient and surface roughness as regards their effects on velocity profiles has been demonstrated. Boundary layer predictions agree with experimental data for a smooth surface, but further investigation is required for flow over a rough surface.


Author(s):  
Martin Bo¨hle ◽  
Richard Becker

Within the last ten years Lattice Boltzmann solvers have become very popular. They are used for flows inside complex geometries and around bodies like cars, for example. Lattice Boltzmann codes are easy to program because no complex linear equation systems must be solved. Furthermore it is easy to implement different kind of flow models, for example models for multiphase flows. The present paper points out the advantages of Lattice Boltmann methods by comparing results of the Lattice Boltzmann method with analytical and standard CFD results. Under standard CFD the application of a commercial CFD-code is meant. Two standard flows are considered. The first flow under consideration is the laminar boundary layer flow. For example, skin friction values calculated by both a standard CFD-code (FLUENT is applied) and a Lattice Boltzmann code are compared. For the laminar boundary layer flow an analytical solution is available. In the present paper all three results (analytical solution, FLUENT solution, Lattice Boltzmann solution) are compared and discussed. It is demonstrated that the results are in good agreement. Additionally, the 2D-flow around a cylinder for Reynold number 35 is considered. It is also demonstrated that the Lattice Boltzmann results are in good agreement with the results calculated by the application of FLUENT.


1990 ◽  
Vol 112 (4) ◽  
pp. 906-912 ◽  
Author(s):  
J. Sucec ◽  
Y. Lu

The problem being addressed is steady, constant property, turbulent, thin boundary layer flow over a body with a pressure gradient. To find the local Stanton number distribution, the integral energy equation, cast in inner variables, is solved for the thermal boundary layer thickness. The needed velocity distributions are given by the inner law and by the combined law of the wall and wake. Approximate temperature profiles are based upon thermal inner and outer laws, except for the thermal superlayer, which is modeled by a polynomial distribution of temperature. Comparison of predictions is made with experimental Stanton numbers from the literature. Very good agreement is noted for zero, adverse, and favorable pressure gradients, including very strong accelerations tending toward laminarization, with less satisfactory agreement in regions “relaxing” from acceleration.


1987 ◽  
Vol 109 (1) ◽  
pp. 10-15 ◽  
Author(s):  
G. J. VanFossen ◽  
R. J. Simoneau

A study has been conducted at the NASA Lewis Research Center to investigate the mechanism that causes free-stream turbulence to increase heat transfer in the stagnation region of turbine vanes and blades. The work was conducted in a wind tunnel at atmospheric conditions to facilitate measurements of turbulence and heat transfer. The model size was scaled up to simulate Reynolds numbers (based on leading edge diameter) that are to be expected on a turbine blade leading edge. Reynolds numbers from 13,000 to 177,000 were run in the present tests. Spanwise averaged heat transfer measurements with high and low turbulence have been made with “rough” and smooth surface stagnation regions. Results of these measurements show that, at the Reynolds numbers tested, the boundary layer remained laminar in character even in the presence of free-stream turbulence. If roughness was added the boundary layer became transitional as evidenced by the heat transfer increase with increasing distance from the stagnation line. Hot-wire measurements near the stagnation region downstream of an array of parallel wires has shown that vorticity in the form of mean velocity gradients is amplified as flow approaches the stagnation region. Finally smoke wire flow visualization and liquid crystal surface heat transfer visualization were combined to show that, in the wake of an array of parallel wires, heat transfer was a minimum in the wire wakes where the fluctuating component of velocity (local turbulence) was the highest. Heat transfer was found to be the highest between pairs of vortices where the induced velocity was toward the cylinder surface.


Sign in / Sign up

Export Citation Format

Share Document