Secondary Flow, Separation and Losses in the NACA 48-Inch Centrifugal Impeller at Design and Off-Design Conditions

Author(s):  
John Moore ◽  
Joan G. Moore

An elliptic flow calculation procedure has been used to model 3-D flow in the NACA 48–inch centrifugal impeller. The results demonstrate that fully elliptic steady flow calculations can be performed at design and off-design conditions. The calculations reproduce the measured overall performance and most of the features of the loss distributions observed in the NACA flow study. They give further insight into the complex 3-D flow with leading-edge separation and tip leakage. The calculated secondary flow patterns are presented and used to explain the convection of vortices in a more recent laser anemometry study of a centrifugal compressor impeller.

Author(s):  
T. Behr ◽  
A. I. Kalfas ◽  
R. A. Abhari

This paper presents an experimental study of the flow mechanisms of tip leakage across a blade of an unshrouded turbine rotor. It shows the design of a new one-and-1/2-stage, unshrouded turbine configuration, which has been developed within the Turbomachinery Laboratory of ETH Zurich. This test case is a model of a high work (Δh/u2 = 2.36) axial turbine. The experimental investigation comprises data from unsteady and steady probe measurements, which has been acquired around all the bladerows of the one-and-1/2-stage, unshrouded turbine. A newly developed 2-sensor Fast Response Aerodynamic Probe (FRAP) technique has been used in the current measurement campaign. The paper contains a detailed analysis of the unsteady interaction between rotor and stator blade rows, with particular attention paid on the flow in the blade tip region. It has been found that the pressure field of the second stator row has a influence on the development of the tip leakage vortex downstream of the rotor. The vortex is modulated by the stator profiles and shows variation in size and relative position to the rotor trailing edge when it stretches around the stator leading edge. Thereby a deflection of the tip leakage vortex has been observed, which expresses in a varying circumferential distance between two neighboring vortices of ±20% of a rotor pitch. Furthermore, a significant influence of quasi-stationary secondary flow features of the upstream stator row on the secondary flow of the rotor has been detected. The geometry data of the one-and-1/2-stage turbine will be available to the public domain for validation and improvement of numerical tools.


Author(s):  
Huijing Zhao ◽  
Zhiheng Wang ◽  
Shubo Ye ◽  
Guang Xi

To better understand the characteristics of tip leakage flow and interpret the correlation between flow instability and tip leakage flow, the flow in the tip region of a centrifugal impeller is investigated by using the Reynolds averaged Navier–Stokes solver technique. With the decrease of mass flow rate, both the tip leakage vortex trajectory and the mainflow/tip leakage flow interface are shifted towards upstream. The mainflow/tip leakage flow interface finally reaches the leading edge of main blade at the near-stall condition. A prediction model is proposed to track the tip leakage vortex trajectory. The blade loading at blade tip and the averaged streamwise velocity of main flow within tip clearance height are adopted to determine the tip leakage vortex trajectory in the proposed model. The coefficient k in Chen’s model is found to be not a constant. Actually, it is correlated with h/b (the ratio of blade tip clearance height to blade tip thickness), because h/b will significantly influence the flow structure across the tip clearance. The effectiveness of the proposed prediction model is further demonstrated by tracking the tip leakage vortex trajectories in another three centrifugal impellers characterized with different h/b (s).


2006 ◽  
Vol 129 (2) ◽  
pp. 348-359 ◽  
Author(s):  
T. Behr ◽  
A. I. Kalfas ◽  
R. S. Abhari

This paper presents an experimental study of the flow mechanisms of tip leakage across a blade of an unshrouded turbine rotor. It shows the design of a new one-and-1∕2-stage, unshrouded turbine configuration, which has been developed within the Turbomachinery Laboratory of ETH Zurich. This test case is a model of a high work (Δh∕u2=2.36) axial turbine. The experimental investigation comprises data from unsteady and steady probe measurements, which has been acquired around all the bladerows of the one-and-1∕2-stage, unshrouded turbine. A newly developed 2-sensor Fast Response Aerodynamic Probe (FRAP) technique has been used in the current measurement campaign. The paper contains a detailed analysis of the unsteady interaction between rotor and stator blade rows, with particular attention paid on the flow in the blade tip region. It has been found that the interaction of the rotor and the downstream stator has an influence on the development of the tip leakage vortex of the rotor. The vortex is modulated by the stator profiles and shows variation in size and relative position to the rotor trailing edge when it stretches around the stator leading edge. Thereby a deflection of the tip leakage vortex has been observed, which expresses in a varying circumferential distance between two neighboring vortices of ±20% of a rotor pitch. Furthermore, a significant influence of quasi-stationary secondary flow features of the upstream stator row on the secondary flow of the rotor has been detected. The geometry and flow field data of the one-and-1∕2-stage turbine will be available to the turbomachinery community for validation and improvement of numerical tools.


Author(s):  
Kazutoyo Yamada ◽  
Yusuke Tamagawa ◽  
Hisataka Fukushima ◽  
Masato Furukawa ◽  
Seiichi Ibaraki ◽  
...  

Two types of transonic centrifugal compressor impeller with splitter blades, which are different in blade count, have been investigated in this study. RANS (Reynolds-Averaged Navier-Stokes) simulations were carried out for several operating conditions to clarify differences in aerodynamic performance characteristic and tip clearance flow field between the two compressors. The simulation shows that basically similar flow events happen in both compressors. A low velocity region is generated near the tip at low flow rate conditions, which results from an expansion of the tip leakage vortex. The low velocity region expands as the flow rate is decreased, and interacts with the pressure surface of the splitter blade near the leading edge. This causes a descent of the blade loading near the tip of the leading edge, and an accumulation of high entropy fluid near the casing-suction corner. Moreover, the tip clearance flow spills ahead of the leading edge of the splitter blade at near stall condition, and eventually the spillage happens at the full blade at stall condition. However, the major difference in solidity influences tip clearance flow/blade interaction, which leads to changes in the performance characteristics. In the impeller with low solidity, the tip leakage vortex breaks down with a large blockage effect because of high blade loading at the tip, which decreases the pressure ratio. The impeller with high solidity is subject to the spillage, which results in an early and large-scale stall that decreases the efficiency.


2001 ◽  
Vol 123 (4) ◽  
pp. 748-754 ◽  
Author(s):  
Choon-Man Jang ◽  
Masato Furukawa ◽  
Masahiro Inoue

Three-dimensional structures of the vortical flow field in a propeller fan with a shroud covering only the rear region of its rotor tip have been investigated by experimental analysis using laser Doppler velocimetry (LDV) measurements and by numerical analysis using a large eddy simulation (LES) in Part I of the present study. The propeller fan has a very complicated vortical flow field near the rotor tip compared with axial fan and compressor rotors. It is found that three vortex structures are formed near the rotor tip: the tip vortex, the leading edge separation vortex, and the tip leakage vortex. The tip vortex is so strong that it dominates the flow field near the tip. Its formation starts from the blade tip suction side near the midchord. Even at the design condition the tip vortex convects nearly in the tangential direction, thus impinging on the pressure surface of the adjacent blade. The leading edge separation vortex develops close along the tip suction surface and disappears in the rear region of the rotor passage. The tip leakage vortex is so weak that it does not affect the flow field in the rotor.


Author(s):  
M. Hoeger ◽  
G. Fritsch ◽  
D. Bauer

For a single-stage transonic compressor rig at the TU Darmstadt 3D viscous simulations are compared to L2F-measurements and data from the EGV leading edge instrumentation to demonstrate the predictive capability of the Navier-Stokes code TRACE_S. In a second step the separated regions at the blade tip are investigated in detail to gain insight into the mechanisms of tip leakage vortex-shock interaction at operating points close to stall, peak efficiency and choke. At the casing the simulations reveal a region with axially reversed flow, leading to a rotationally asymmetric displacement of the outermost stream surface and a localized additional pitch-average blockage of app. 2%. Loss mechanisms and streamline patterns deduced from the simulation are also discussed. Although the flow is essentially 3D, a simple model for local blockage from tip leakage is demonstrated to significantly improve 2D-simulations on S1-surfaces.


2020 ◽  
Vol 37 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Bin Jiang ◽  
Xiangtong Shi ◽  
Qun Zheng ◽  
Qingfang Zhu ◽  
Zhongliang Chen ◽  
...  

AbstractThe onset of spike stall induced by the interaction of hub corner separation flow with the tip leakage flow is investigated in detail by numerical method in this paper. The time resolved results indicate that the remarkable radial secondary flow from hub to tip near the trailing edge is formed when the compressor approaching rotating stall. The radial secondary flow is unstable and cross-passages propagates, which flows in and away out of the tip region periodically. The disturbance caused by radial secondary flow will influence the tip leakage flow directly by reforming the vortexes in blade tip region. A secondary vortex which comes from the radial migration of corner separation and is induced by the tip leakage vortex appears in the tip region. The simulation result demonstrates that the generation of the secondary vortex is an important symbol of blockage growth in the tip region at the stall inception phase. The disturbance produced by secondary vortex is an incentive of the leading edge overflow and the intensity of secondary vortex could be used as a criterion of rotating stall before leading edge spillage.


Author(s):  
Xudong Huang ◽  
Haixin Chen ◽  
Song Fu

The performance of NASA Rotor 37 with Circumferential Grooves Casing Treatment (CGCT) is studied with an in-house CFD code NSAWET. Based on the stall mechanism analysis, a number of CGCT configurations have been proposed and numerically tested. The computation results show that the stall mechanisms are strongly related with the width of tip clearance. With a small tip clearance, the stall process is dominated by the trailing edge separation, while the leading edge tip leakage vortex breakdown induced blockage causes stall in a large tip clearance configuration. Circumferential grooves at appropriate axial locations can be beneficial to the stall margin in these two types of stall processes. The effects of the groove width and depth are presented. The mechanisms of CGCT for different tip clearances are also discussed.


Sign in / Sign up

Export Citation Format

Share Document