Effect of Initial Fuel Distribution and Subsequent Mixing on Emissions From Lean, Premixed Flames

Author(s):  
J. R. Maughan ◽  
R. E. Warren ◽  
A. K. Tolpadi ◽  
T. P. Roloff

Results presented here illustrate how optimizing the fuel distribution at injection reduces the subsequent mixing needed for ultralow emissions in lean, premixed gaseous flames. An experimental facility was developed for bluff body stabilization of a high pressure natural gas flame at the exit of a 4” diameter mixing tube. Fuel was injected through two concentric ring manifolds. NOx and CO drop dramatically from diffusion flame to perfectly premixed levels with increasing mixing distance. Furthermore, for each mixing distance, there is an optimum fuel split that results in minimum NOx and CO emissions. Computational fluid dynamics and laser sheet flow visualization show the recirculation zones and fluid mixing that affect fuel injection requirements. Although improved fuel injection and greater mixing will both drive the NOx-CO curve to the origin, improving the initial fuel distribution reduces the requirement for subsequent mixing.

2018 ◽  
Vol 13 (6) ◽  
pp. 48 ◽  
Author(s):  
Yu Jeong Kim ◽  
Bok Jik Lee ◽  
Hong G. Im

Two-dimensional direct numerical simulations were conducted to investigate the dynamics of lean premixed flames stabilized on a meso-scale bluff-body in hydrogen-air and syngas-air mixtures. To eliminate the flow confinement effect due to the narrow channel, a larger domain size at twenty times the bluff-body dimension was used in the new simulations. Flame/flow dynamics were examined as the mean inflow velocity is incrementally raised until blow-off occurs. As the mean inflow velocity is increased, several distinct modes in the flame shape and fluctuation patterns were observed. In contrast to our previous study with a narrow channel, the onset of local extinction was observed during the asymmetric vortex shedding mode. Consequently, the flame stabilization and blow-off behavior was found to be dictated by the combined effects of the hot product gas pocket entrained into the extinction zone and the ability to auto-ignite the mixture within the given residence time corresponding to the lateral flame fluctuations. A proper time scale analysis is attempted to characterize the flame blow-off mechanism, which turns out to be consistent with the classic theory of Zukoski and Marble.


Author(s):  
Jeffery A. Lovett ◽  
Kareem Ahmed ◽  
Oleksandr Bibik ◽  
Andrew G. Smith ◽  
Eugene Lubarsky ◽  
...  

This paper describes recent learning on the flame structure associated with bluff-body stabilized flames and the influence of the fuel distribution with nonpremixed, jet-in-crossflow fuel injection. Recent experimental and analytical results disclosing the flame structure are discussed in relation to classical combustion reaction zone regimes. Chemiluminescence and planar fluorescence imaging of OH* radicals as an indicator of the flame zone are analyzed from various tests conducted at Georgia Tech using a two-dimensional vane-type bluff-body with simple wall-orifice fuel injectors. The results described in this paper support the view that combustion occurs in separated flame zones aligned with the nonpremixed fuel distribution associated with the fuel jets that are very stable and contribute to flame stability at low fuel flow rates. The experimental data is also compared with computational reacting flow large-eddy simulations and interpreted in terms of the fundamental reaction zone regimes for premixed flames. For the conditions of the present experiment, the results indicate combustion occurs over a wide range of flame regimes including the broken reaction zone or separated flamelet regimes.


Author(s):  
Jeffery A. Lovett ◽  
Kareem A. Ahmed ◽  
Oleksandr Bibik ◽  
Andrew G. Smith ◽  
Eugene Lubarsky ◽  
...  

This paper describes recent learning on the flame structure associated with bluff-body stabilized flames and the influence of the fuel distribution with nonpremixed, jet-in-crossflow fuel injection. Recent experimental and analytical results disclosing the flame structure are discussed in relation to classical combustion reaction zone regimes. Chemiluminescence and planar fluorescence imaging of OH* radicals as an indicator of the flame zone are analyzed from various tests conducted at Georgia Tech using a two-dimensional vane-type bluffbody with simple wall-orifice fuel injectors. The results described in this paper support the view that combustion occurs in separated flame zones aligned with the non-premixed fuel distribution associated with the fuel jets that are very stable and contribute to flame stability at low fuel flow rates. The experimental data is also compared with computational reacting flow large-eddy simulations and interpreted in terms of the fundamental reaction zone regimes for premixed flames. For the conditions of the present experiment, the results indicate combustion occurs over a wide range of flame regimes including the broken reaction zone or separated flamelet regimes.


Computation ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 43
Author(s):  
Shokri Amzin ◽  
Mohd Fairus Mohd Yasin

As emission legislation becomes more stringent, the modelling of turbulent lean premixed combustion is becoming an essential tool for designing efficient and environmentally friendly combustion systems. However, to predict emissions, reliable predictive models are required. Among the promising methods capable of predicting pollutant emissions with a long chemical time scale, such as nitrogen oxides (NOx), is conditional moment closure (CMC). However, the practical application of this method to turbulent premixed flames depends on the precision of the conditional scalar dissipation rate,. In this study, an alternative closure for this term is implemented in the RANS-CMC method. The method is validated against the velocity, temperature, and gas composition measurements of lean premixed flames close to blow-off, within the limit of computational fluid dynamic (CFD) capability. Acceptable agreement is achieved between the predicted and measured values near the burner, with an average error of 15%. The model reproduces the flame characteristics; some discrepancies are found within the recirculation region due to significant turbulence intensity.


Author(s):  
Thomas Scarinci ◽  
John L. Halpin

Thermoacoustic resonance is a difficult technical problem that is experienced by almost all lean-premixed combustors. The Industrial Trent combustor is a novel dry-low-emissions (DLE) combustor design, which incorporates three stages of lean premixed fuel injection in series. The three stages in series allow independent control of two stages — the third stage receives the balance of fuel to maintain the desired power level — at all power conditions. Thus, primary zone and secondary zone temperatures can be independently controlled. This paper examines how the flexibility offered by a 3-stage lean premixed combustion system permits the implementation of a successful combustion noise avoidance strategy at all power conditions and at all ambient conditions. This is because at a given engine condition (power level and day temperature) a characteristic “noise map” can be generated on the engine, independently of the engine running condition. The variable distribution of heat release along the length of the combustor provides an effective mechanism to control the amplitude of longitudinal resonance modes of the combustor. This approach has allowed the Industrial Trent combustion engineers to thoroughly “map out” all longitudinal combustor acoustic modes and design a fuel schedule that can navigate around regions of combustor thermoacoustic resonance. Noise mapping results are presented in detail, together with the development of noise prediction methods (frequency and amplitude) that have allowed the noise characteristics of the engine to be established over the entire operating envelope of the engine.


Sign in / Sign up

Export Citation Format

Share Document