scholarly journals Modelling of a Bluff-Body Stabilised Premixed Flames Close to Blow-Off

Computation ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 43
Author(s):  
Shokri Amzin ◽  
Mohd Fairus Mohd Yasin

As emission legislation becomes more stringent, the modelling of turbulent lean premixed combustion is becoming an essential tool for designing efficient and environmentally friendly combustion systems. However, to predict emissions, reliable predictive models are required. Among the promising methods capable of predicting pollutant emissions with a long chemical time scale, such as nitrogen oxides (NOx), is conditional moment closure (CMC). However, the practical application of this method to turbulent premixed flames depends on the precision of the conditional scalar dissipation rate,. In this study, an alternative closure for this term is implemented in the RANS-CMC method. The method is validated against the velocity, temperature, and gas composition measurements of lean premixed flames close to blow-off, within the limit of computational fluid dynamic (CFD) capability. Acceptable agreement is achieved between the predicted and measured values near the burner, with an average error of 15%. The model reproduces the flame characteristics; some discrepancies are found within the recirculation region due to significant turbulence intensity.

Computation ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 26 ◽  
Author(s):  
Shokri Amzin ◽  
Mariusz Domagała

In turbulent premixed flames, for the mixing at a molecular level of reactants and products on the flame surface, it is crucial to sustain the combustion. This mixing phenomenon is featured by the scalar dissipation rate, which may be broadly defined as the rate of micro-mixing at small scales. This term, which appears in many turbulent combustion methods, includes the Conditional Moment Closure (CMC) and the Probability Density Function (PDF), requires an accurate model. In this study, a mathematical closure for the conditional mean scalar dissipation rate, <Nc|ζ>, in Reynolds, Averaged Navier–Stokes (RANS) context is proposed and tested against two different Direct Numerical Simulation (DNS) databases having different thermochemical and turbulence conditions. These databases consist of lean turbulent premixed V-flames of the CH4-air mixture and stoichiometric turbulent premixed flames of H2-air. The mathematical model has successfully predicted the peak and the typical profile of <Nc|ζ> with the sample space ζ and its prediction was consistent with an earlier study.


1999 ◽  
Vol 23 (3-4) ◽  
pp. 425-433 ◽  
Author(s):  
S.- H. Kim ◽  
T. Liu ◽  
K.Y. Huh

A turbulent nonpremixed flame of H2/CO-air stabilized on a bluff-body is simulated by the conditional moment closure (CMC) model. Full spatial variation of the conditional quantities is taken into account for an elliptic recirculating flow field. Comparison has shown reasonable agreement for the conditional and Favre mean temperature and mass fractions of CO and H20 between calculation and experiment. Overprediction of the peak OH mass fraction is attributed to inaccurate modelling of the conditional scalar dissipation rate. The CMC model is capable of predicting major features of a turbulent diffusion flame characterized by finite chemical reaction rates.


Author(s):  
Scott Martin ◽  
Aleksandar Jemcov ◽  
Björn de Ruijter

Here the premixed Conditional Moment Closure (CMC) method is used to model the recent PIV and Raman turbulent, enclosed reacting methane jet data from DLR Stuttgart [1]. The experimental data has a rectangular test section at atmospheric pressure and temperature with a single inlet jet. A jet velocity of 90 m/s is used with an adiabatic flame temperature of 2,064 K. Contours of major species, temperature and velocities along with velocity rms values are provided. The conditional moment closure model has been shown to provide the capability to model turbulent, premixed methane flames with detailed chemistry and reasonable runtimes [2]. The simplified CMC model used here falls into the class of table lookup turbulent combustion models where the chemical kinetics are solved offline over a range of conditions and stored in a table that is accessed by the CFD code. Most table lookup models are based on the laminar 1-D flamelet equations, which assume the small scale turbulence does not affect the reaction rates, only the large scale turbulence has an effect on the reaction rates. The CMC model is derived from first principles to account for the effects of small scale turbulence on the reaction rates, as well as the effects of the large scale mixing, making it more versatile than other models. This is accomplished by conditioning the scalars with the reaction progress variable. By conditioning the scalars and accounting for the small scale mixing, the effects of turbulent fluctuations of the temperature on the reaction rates are more accurately modeled. The scalar dissipation is used to account for the effects of the small scale mixing on the reaction rates. The original premixed CMC model used a constant value of scalar dissipation, here the scalar dissipation is conditioned by the reaction progress variable. The steady RANS 3-D version of the open source CFD code OpenFOAM is used. Velocity, temperature and species are compared to the experimental data. Once validated, this CFD turbulent combustion model will have great utility for designing lean premixed gas turbine combustors.


2018 ◽  
Vol 13 (6) ◽  
pp. 48 ◽  
Author(s):  
Yu Jeong Kim ◽  
Bok Jik Lee ◽  
Hong G. Im

Two-dimensional direct numerical simulations were conducted to investigate the dynamics of lean premixed flames stabilized on a meso-scale bluff-body in hydrogen-air and syngas-air mixtures. To eliminate the flow confinement effect due to the narrow channel, a larger domain size at twenty times the bluff-body dimension was used in the new simulations. Flame/flow dynamics were examined as the mean inflow velocity is incrementally raised until blow-off occurs. As the mean inflow velocity is increased, several distinct modes in the flame shape and fluctuation patterns were observed. In contrast to our previous study with a narrow channel, the onset of local extinction was observed during the asymmetric vortex shedding mode. Consequently, the flame stabilization and blow-off behavior was found to be dictated by the combined effects of the hot product gas pocket entrained into the extinction zone and the ability to auto-ignite the mixture within the given residence time corresponding to the lateral flame fluctuations. A proper time scale analysis is attempted to characterize the flame blow-off mechanism, which turns out to be consistent with the classic theory of Zukoski and Marble.


Author(s):  
Daniel Sequera ◽  
Ajay K. Agrawal

Lean Premixed Combustion (LPM) is a widely used approach to effectively reduce pollutant emissions in advanced gas turbines. Most LPM combustion systems employ the swirling flow with a bluff body at the center to stabilize the flame. The flow recirculation region established downstream of the bluff-body brings combustion products in contact with fresh reactants to sustain the reactions. However, such systems are prone to combustion oscillations and flame flashback, especially if high hydrogen containing fuels are used. Low-Swirl Injector (LSI) is an innovative approach, whereby a freely propagating LPM flame is stabilized in a diverging flow field surrounded by a weakly-swirling flow. The LSI is devoid of the flow recirculation region in the reaction zone. In the present study, emissions measurements are reported for a LSI operated on mixtures of methane (CH4), hydrogen (H2), and carbon monoxide (CO) to simulate H2 synthetic gas produced by coal gasification. For a fixed adiabatic flame temperature and air flow rate, CH4 content of the fuel in atmospheric pressure experiments is varied from 100% to 50% (by volume) with the remainder of the fuel containing equal amounts of CO and H2. For each test case, the CO and nitric oxide (NOx) emissions are measured axially at the combustor center and radially at several axial locations. Results show that the LSI provides stable flame for a range of operating conditions and fuel mixtures. The emissions are relatively insensitive to the fuel composition within the operational range of the present experiments.


Author(s):  
Carlos Velez ◽  
Scott Martin ◽  
Aleksander Jemcov ◽  
Subith Vasu

The tabulated premixed conditional moment closure (T-PCMC) method has been shown to provide the capability to model turbulent, premixed methane flames with detailed chemistry and reasonable runtimes in Reynolds-averaged Navier–Stokes (RANS) environment by Martin et al. (2013, “Modeling an Enclosed, Turbulent Reacting Methane Jet With the Premixed Conditional Moment Closure Method,” ASME Paper No. GT2013-95092). Here, the premixed conditional moment closure (PCMC) method is extended to large eddy simulation (LES). The new model is validated with the turbulent, enclosed reacting methane backward facing step data from El Banhawy et al. (1983, “Premixed, Turbulent Combustion of a Sudden-Expansion Flow,” Combust. Flame, 50, pp. 153–165). The experimental data have a rectangular test section at atmospheric pressure and temperature with an inlet velocity of 10.5 m/s and an equivalence ratio of 0.9 for two different step heights. Contours of major species, velocity, and temperature are provided. The T-PCMC model falls into the class of table lookup turbulent combustion models in which the combustion model is solved offline over a range of conditions and stored in a table that is accessed by the computational fluid dynamic (CFD) code using three controlling variables: the reaction progress variable (RPV), variance, and local scalar dissipation rate. The local scalar dissipation rate is used to account for the affects of the small-scale mixing on the reaction rates. A presumed shape beta function probability density function (PDF) is used to account for the effects of subgrid scale (SGS) turbulence on the reactions. SGS models are incorporated for the scalar dissipation and variance. The open source CFD code OpenFOAM is used with the compressible Smagorinsky LES model. Velocity, temperature, and major species are compared to the experimental data. Once validated, this low “runtime” CFD turbulent combustion model will have great utility for designing the next generation of lean premixed (LPM) gas turbine combustors.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Huangwei Zhang

Large eddy simulation (LES) with three-dimensional conditional moment closure (CMC) subgrid model for combustion is applied to simulate a swirl-stabilized nonpremixed methane flame with localized extinction, with special focus on the effects of heat loss to the burner surface. The convective wall heat loss is modeled through introducing a source term in the conditionally filtered total enthalpy equation for the CMC cells adjacent to the wall. The mean heat flux is high on the middle surface of the bluff body, but relatively low near its edges. The turbulent heat flux based on the gradient of the resolved temperature is relatively low compared to the laminar counterpart, but increases with the turbulent intensity. The heat loss facilitates the occurrences of extinction and re-ignition for the CMC cells immediately adjacent to the wall, evidenced by comparing flame structures in the near-wall CMC cells. This can be directly linked to the increase of the mean conditional scalar dissipation near the wall in the heat loss case. Furthermore, the degree of local extinction near the bluff body measured by conditional reactedness at stoichiometry is intensified due to the wall heat loss. However, the results also show that there is negligible influence of wall heat loss on the probability density function (PDF) of the lift-off height, demonstrating the dominance of aerodynamic effects on flame stabilization. The results are in reasonable agreement with experimental measurements.


Sign in / Sign up

Export Citation Format

Share Document