Optimization of Multiple Jets Mixing With a Confined Crossflow

Author(s):  
Th. Doerr ◽  
M. Blomeyer ◽  
D. K. Hennecke

An experimental investigation of a non-reacting multiple jet mixing with a confined crossflow has been conducted. Flow and geometric conditions were varied in order to examine favourable parameters for mixing. The requirement for a rapid and intense mixing process originates from combustion applications, especially the RQL-combustion concept. Thus, the jets were perpendicularly injected out of one opposed row of circular orifices into a heated crossflow in a rectangular duct. Spacing and hole size were varied within the ranges referring to combustor applications. The results presented are restricted to an inline orientation of opposed jet axis. Temperature distribution, mixing rate and standard deviation were determined at discrete downstream locations. Best i.e. uniform mixing can be observed strongly depending on momentum flux ratio. For all geometries investigated an optimum momentum flux ratio yields to a homogeneous temperature distribution in the flowfield downstream of the injection plane. Too high ratios deteriorate the mixing process due to the mutual impact of the opposed entraining jets along with a thermal stratification of the flowfield. Correlations are introduced describing the dependency of optimum momentum flux ratio on mixing hole geometry. They allow the optimization of jet-in-crossflow mixing processes in respect to uniform mixing.

1997 ◽  
Vol 119 (2) ◽  
pp. 315-321 ◽  
Author(s):  
Th. Doerr ◽  
M. Blomeyer ◽  
D. K. Hennecke

An experimental investigation of a nonreacting multiple jet mixing with a confined crossflow has been conducted. Flow and geometric conditions were varied in order to examine favorable parameters for mixing. The requirement for a rapid and intense mixing process originates from combustion applications, especially the RQL-combustion concept. Thus, the jets were perpendicularly injected out of one opposed row of circular orifices into a heated crossflow in a rectangular duct. Spacing and hole size were varied within the ranges referring to combustor applications. The results presented are restricted to an in-line orientation of opposed jet axis. Temperature distribution, mixing rate, and standard deviation were determined at discrete downstream locations. Best, i.e., uniform mixing can be observed strongly depending on momentum flux ratio. For all geometries investigated, an optimum momentum flux ratio yields to a homogeneous temperature distribution in the flow field downstream of the injection plane. Overly high ratios deteriorate the mixing process due to the mutual impact of the opposed entraining jets along with a thermal stratification of the flowfield. Correlations are introduced describing the dependency of optimum momentum flux ratio on mixing hole geometry. They allow the optimization of jet-in-crossflow mixing processes in respect to uniform mixing.


Author(s):  
Malte M. Blomeyer ◽  
Bernd H. Krautkremer ◽  
Dietmar K. Hennecke

The injection of jets normal to a crossflow is a key technology for the development of an advanced low NOx gas turbine based on a Rich-Burn/Quick-Quench/Lean-Burn (RQL) combustor. The RQL combustor depends on an efficient quick mix section that rapidly and uniformly dilutes the rich zone products to minimize emissions. Therefore, an experimental investigation of a non-reacting mixing process of jets in a crossflow was conducted. The jets were perpendicularly injected through one stage of opposed rows of circular orifices into a slightly heated crossflow within a rectangular duct. All geometries were tested with staggered arrangements of the centerlines of the opposed jets. The temperature distribution was measured and from that the mixing rate was determined for parametric variations of flow and geometric conditions. In accordance with the application to RQL-combustion, emphasis was put on high momentum flux ratios with high massflow addition. The experimental study provides the data base for a correlation of best mixing depending on geometric conditions for staggered mixing configurations. The correlation presented specifies the optimum momentum flux ratio as a function of the duct height to hole diameter ratio and the relative spacing of the injected jets.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Artur Joao Carvalho Figueiredo ◽  
Robin Jones ◽  
Oliver J. Pountney ◽  
James A. Scobie ◽  
Gary D. Lock ◽  
...  

This paper presents volumetric velocimetry (VV) measurements for a jet in crossflow that is representative of film cooling. VV employs particle tracking to nonintrusively extract all three components of velocity in a three-dimensional volume. This is its first use in a film-cooling context. The primary research objective was to develop this novel measurement technique for turbomachinery applications, while collecting a high-quality data set that can improve the understanding of the flow structure of the cooling jet. A new facility was designed and manufactured for this study with emphasis on optical access and controlled boundary conditions. For a range of momentum flux ratios from 0.65 to 6.5, the measurements clearly show the penetration of the cooling jet into the freestream, the formation of kidney-shaped vortices, and entrainment of main flow into the jet. The results are compared to published studies using different experimental techniques, with good agreement. Further quantitative analysis of the location of the kidney vortices demonstrates their lift off from the wall and increasing lateral separation with increasing momentum flux ratio. The lateral divergence correlates very well with the self-induced velocity created by the wall–vortex interaction. Circulation measurements quantify the initial roll up and decay of the kidney vortices and show that the point of maximum circulation moves downstream with increasing momentum flux ratio. The potential for nonintrusive VV measurements in turbomachinery flow has been clearly demonstrated.


Author(s):  
Artur Joao Carvalho Figueiredo ◽  
Robin Jones ◽  
Oliver J. Pountney ◽  
James A. Scobie ◽  
Gary D. Lock ◽  
...  

This paper presents Volumetric Velocimetry (VV) measurements for a jet in crossflow that is representative of film cooling. Volumetric velocimetry employs particle tracking to non-intrusively extract all three components of velocity in a three-dimensional volume. This is its first use in a film-cooling context. The primary research objective was to develop this novel measurement technique for turbomachinery applications, whilst collecting a high-quality data set that can improve the understanding of the flow structure of the cooling jet. A new facility was designed and manufactured for this study with emphasis on optical access and controlled boundary conditions. For a range of momentum flux ratios from 0.65 to 6.5 the measurements clearly show the penetration of the cooling jet into the freestream, the formation of kidney-shaped vortices and entrainment of main flow into the jet. The results are compared to published studies using different experimental techniques, with good agreement. Further quantitative analysis of the location of the kidney vortices demonstrates their lift off from the wall and increasing lateral separation with increasing momentum flux ratio. The lateral divergence correlates very well with the self-induced velocity created by the wall-vortex interaction. Circulation measurements quantify the initial roll up and decay of the kidney vortices and show that the point of maximum circulation moves downstream with increasing momentum flux ratio. The potential for non-intrusive volumetric velocimetry measurements in turbomachinery flow has been clearly demonstrated.


2015 ◽  
Vol 52 (3) ◽  
pp. 621-634 ◽  
Author(s):  
Alka Gupta ◽  
Mohamed Saeed Ibrahim ◽  
R. S. Amano

2018 ◽  
Vol 28 (7) ◽  
pp. 599-620 ◽  
Author(s):  
Scott B. Leask ◽  
Vincent G. McDonell ◽  
Scott Samuelsen

Author(s):  
Venkat S. Iyengar ◽  
Sathiyamoorthy Kumarasamy ◽  
Srinivas Jangam ◽  
Manjunath Pulumathi

Cross flow fuel injection is a widely used approach for injecting liquid fuel in gas turbine combustors and afterburners due to the higher penetration and rapid mixing of fuel and the cross flowing airstream. Because of the very limited residence time available in these combustors it is essential to ensure that smaller drop sizes are generated within a short axial distance from the injector in order to promote effective mixing. This requirement calls for detailed investigations into spray characteristics of different injector configurations in a cross-flow environment for identifying promising configurations. The drop size characteristics of a liquid jet issuing from a forward angled injector into a cross-flow of air were investigated experimentally at conditions relevant to gas turbine afterburners. A rig was designed and fabricated to investigate the injection of liquid jet in subsonic cross-flow with a rectangular test section of cross section measuring 50 mm by 70 mm. Experiments were done with a 10 degree forward angled 0.8 mm diameter plain orifice nozzle which was flush mounted on the bottom plate of test section. Laser diffraction using Malvern Spraytec particle analyzer was used to measure drops size and distributions in the near field of the spray. Measurements were performed at a distance of 70 mm from the injector at various locations along the height of the spray plume for a reasonable range of liquid flow rates as in practical devices. The sprays were characterized using the non dimensional parameters such as the Weber number and the momentum flux ratio and drop sizes were measured at three locations along the height of the spray from the bottom wall. The momentum flux ratio was varied from 5 to 25. Results indicate that with increase in momentum flux ratio the SMD reduced at the specific locations and an higher overall SMD was observed as one goes from the bottom to the top of the spray plume. This was accompanied by a narrowing of the drop size distribution.


Author(s):  
Jinkwan Song ◽  
Charles Cary Cain ◽  
Jong Guen Lee

The breakup, penetration, droplet size, and size distribution of a Jet A-1 fuel in air crossflow has been investigated with focus given to the impact of surrounding air pressure. Data have been collected by particle Doppler phased analyzer (PDPA), Mie-scattering with high speed photography augmented by laser sheet, and Mie-scattering with intensified charge-coupled device (ICCD) camera augmented by nanopulse lamp. Nozzle orifice diameter, do, was 0.508 mm and nozzle orifice length to diameter ratio, lo/do, was 5.5. Air crossflow velocities ranged from 29.57 to 137.15 m/s, air pressures from 2.07 to 9.65 bar, and temperature held constant at 294.26 K. Fuel flow provides a range of fuel/air momentum flux ratio (q) from 5 to 25 and Weber number from 250 to 1000. From the results, adjusted correlation of the mean drop size has been proposed using drop size data measured by PDPA as follows: (D0/D32)=0.267Wea0.44q0.08(ρl/ρa)0.30(μl/μa)-0.16. This correlation agrees well and shows roles of aerodynamic Weber number, Wea, momentum flux ratio, q, and density ratio, ρl/ρa. Change of the breakup regime map with respect to surrounding air pressure has been observed and revealed that the boundary between each breakup modes can be predicted by a transformed correlation obtained from above correlation. In addition, the spray trajectory for the maximum Mie-scattering intensity at each axial location downstream of injector is extracted from averaged Mie-scattering images. From these results, correlations with the relevant parameters including q, x/do, density ratio, viscosity ratio, and Weber number are made over a range of conditions. According to spray trajectory at the maximum Mie-scattering intensity, the effect of surrounding air pressure becomes more important in the farfield. On the other hand, effect of aerodynamic Weber number is more important in the nearfield.


Author(s):  
Youngbin Yoon ◽  
Gujeong Park ◽  
Sukil Oh ◽  
Jinhyun Bae

Studies on combustion instability in liquid rocket engines are important in improving combustion efficiency andpreventing combustion chamber losses. To prevent combustion instability, methods such as baffles and cavities are used. The injector is located in the middle of the perturbation-propagation process in the rocket engine, so it is important to study the suppression of combustion instability using the design of the injector. Much research has been focused on the study of liquid excitation in a single injector; however, the actual injector used in a liquid rocket engine is a coaxial injector. In this study, the dynamic characteristics of a gas-centred swirl coaxial injector were investigated by varying the gap thickness and momentum-flux ratio. Spray photographs were captured by synchronizing a stroboscope and digital camera, and a high-speed camera and Xenon lamp were also used. To measure the liquid film, a measurement system was implemented using the electrical conductance method. For excitation of the gas, an acoustic speaker was used to impart a frequency to the gas. The gGas velocity and effect of excitation were measured by hot-wire anemometry. A mechanical pulsator was used for liquid flow excitation. Liquid fluctuation was measured by a dynamic pressure sensor. In both gas and liquid excitation cases, the gain increased as the gap thickness decreased and the momentum-flux ratio increased. From these results, it can be concluded that gap thickness and momentum-flux ratio are major factors in suppressing combustioninstability. DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4653


Sign in / Sign up

Export Citation Format

Share Document