Kinematic Analysis and Singularity Loci of Spatial Four-Degree-of-Freedom Parallel Manipulators

Author(s):  
Jiegao Wang ◽  
Clément M. Gosselin

Abstract The kinematic analysis and the determination of the singularity loci of spatial four-degree-of-freeedom parallel manipulators with prismatic or revolute actuators are discussed in this article. After introducing the architecture of the spatial parallel four-degree-of-freedom manipulators, algorithms for the solution of the inverse kinematic problem are provided for the two kinds of manipulators considered. Two different methods are presented for the derivation of the velocity equations and the corresponding Jacobian matrices are derived. The numerical determination of the workspace boundaries is then briefly discussed. Finally, the determination of the singularity loci is performed using the velocity equations and examples are given to illustrate the results obtained. Spatial four-degree-of-freedom parallel manipulators can be used in several robotic applications as well as in flight simulators. The determination of their singularity loci is a very important design issue.

1998 ◽  
Vol 120 (4) ◽  
pp. 555-558 ◽  
Author(s):  
J. Wang ◽  
C. M. Gosselin

The kinematic analysis and the determination of the singularity loci of spatial four-degree-of-freedom parallel manipulators with prismatic or revolute actuators are discussed in this article. A new method for the derivation of the velocity equations and the corresponding Jacobian matrices is presented. The numerical determination of the workspace boundaries is then briefly discussed. Finally, the determination of the singularity loci is performed using the velocity equations and examples are given to illustrate the results obtained. Spatial four-degree-of-freedom parallel manipulators can be used in several robotic applications as well as in flight simulators. The determination of their singularity loci is a very important design issue.


Author(s):  
Jérôme Landuré ◽  
Clément Gosselin

This article presents the kinematic analysis of a six-degree-of-freedom six-legged parallel mechanism of the 6-PUS architecture. The inverse kinematic problem is recalled and the Jacobian matrices are derived. Then, an algorithm for the geometric determination of the workspace is presented, which yields a very fast and accurate description of the workspace of the mechanism. Singular boundaries and a transmission ratio index are then introduced and studied for a set of architectural parameters. The proposed analysis yields conceptual architectures whose properties can be adjusted to fit given applications.


Author(s):  
Haidong Li ◽  
Cle´ment M. Gosselin ◽  
Marc J. Richard ◽  
Boris Mayer-St-Onge

The determination of the 6-D singularity locus of the general Gough-Stewart platform is discussed in this article. The derivation of the velocity equation and the corresponding Jacobian matrices is first presented. Then a new procedure is introduced to obtain the analytical expression of the singularity locus, which is a function of six variables (x, y, z, φ, θ, ψ), using the velocity equation. Examples are also given to illustrate the results obtained. Gough-Stewart platforms can be used in several robotic applications as well as in flight simulators. The determination of the singularity locus is a very important design and application issue.


2005 ◽  
Vol 128 (1) ◽  
pp. 279-287 ◽  
Author(s):  
Haidong Li ◽  
Clément M. Gosselin ◽  
Marc J. Richard ◽  
Boris Mayer St-Onge

The determination of the 6D singularity locus of the general Gough-Stewart platform is discussed in this article. The derivation of the velocity equation and the corresponding Jacobian matrices is first presented. Then a new procedure is introduced to obtain the analytical expression of the singularity locus, which is a function of six variables (x,y,z,ϕ,θ,ψ), using the velocity equation. Examples are also given to illustrate the results obtained. Gough-Stewart platforms can be used in several robotic applications as well as in flight simulators. The determination of the singularity locus is a very important design and application issue.


Author(s):  
C. Gosselin

Abstract This paper presents an algorithm for the determination of the workspace of parallel manipulators. The method described here, which is based on geometrical properties of the workspace, leads to a simple graphical representation of the regions of the three-dimensional Cartesian space that are attainable by the manipulator with a given orientation of the platform. Moreover, the volume of the workspace can be easily computed by performing an integration on its boundary, which is obtained from the algorithm. Examples are included to illustrate the application of the method to a six-degree-of-freedom fully-parallel manipulator.


Author(s):  
Clément M. Gosselin ◽  
Jaouad Sefrioui

Abstract In this paper, an algorithm for the determination of the singularity loci of spherical three-degree-of-freedom parallel manipulators with prismatic atuators is presented. These singularity loci, which are obtained as curves or surfaces in the Cartesian space, are of great interest in the context of kinematic design. Indeed, it has been shown elsewhere that parallel manipulators lead to a special type of singularity which is located inside the Cartesian workspace and for which the end-effector becomes uncontrollable. It is therfore important to be able to identify the configurations associated with theses singularities. The algorithm presented is based on analytical expressions of the determinant of a Jacobian matrix, a quantity that is known to vanish in the singular configurations. A general spherical three-degree-of-freedom parallel manipulator with prismatic actuators is first studied. Then, several particular designs are investigated. For each case, an analytical expression of the singularity locus is derived. A graphical representation in the Cartesian space is then obtained.


1992 ◽  
Vol 114 (3) ◽  
pp. 438-443 ◽  
Author(s):  
B. Padmanabhan ◽  
V. Arun ◽  
C. F. Reinholtz

A variety of applications for variable-geometry truss manipulators (VGTMs) have been demonstrated or proposed in the literature. Most of these applications require solution to the inverse kinematic problem, yet only a few isolated examples of closed-form solution methods have been presented to date. This paper provides an overview to the general problem of inverse kinematic analysis of variable-geometry truss manipulators and presents new closed-form solution techniques for problems of practical importance.


2021 ◽  
Vol 343 ◽  
pp. 08004
Author(s):  
Mihai Crenganis ◽  
Alexandru Barsan ◽  
Melania Tera ◽  
Anca Chicea

In this paper, a dynamic analysis for a 5 degree of freedom (DOF) robotic arm with serial topology is presented. The dynamic model of the robot is based on importing a tri-dimensional CAD model of the robot into Simulink®-Simscape™-Multibody™. The dynamic model of the robot in Simscape is a necessary and important step in development of the mechanical structure of the robot. The correct choice of the electric motors is made according to the resistant joint torques determined by running the dynamic analysis. One can import complete CAD assemblies, including all masses, inertias, joints, constraints, and tri-dimensional geometries, into the model block. The first step for executing a dynamic analysis is to resolve the Inverse Kinematics (IK) problem for the redundant robot. The proposed method for solving the inverse kinematic problem for this type of structure is based on a geometric approach and validated afterwards using SimScape Multibody. Solving the inverse kinematics problem is a mandatory step in the dynamic analysis of the robot, this is required to drive the robot on certain user-imposed trajectories. The dynamic model of the serial robot is necessary for the simulation of motion, analysis of the robot’s structure and design of optimal control algorithms.


2012 ◽  
Vol 12 (5) ◽  
Author(s):  
Mir Amin Hosseini ◽  
Hamid-Reza Mohammadi Daniali

Parallel manipulators consist of fixed and moving platforms connected to each other with some actuated links. They have some significant advantages over their serial counterparts. While, they suffer from relatively small workspaces, complex kinematics relations and highly singular points within their workspaces. In this paper, forward kinematics of Tricept parallel manipulator is solved analytically and its workspace optimization is performed. This parallel manipulator has a complex degree of freedom, therefore leads to dimensional in-homogeneous Jacobian matrices. Thus, we divide some entries of the Jacobian by units of length, thereby producing a new Jacobian that is dimensionally homogeneous. Moreover, its workspace is parameterized using some design parameters. Then, using GA method, the workspace is optimized subjects to some geometric constraints. Finally, dexterity of the design is evaluated. Keywords- Kinematic, Workspace, Singularity, TriceptABSTRAK - Manipulator selari terdiri daripada platform tetap dan bergerak yang bersambung antara satu sama lain dengan beberapa pautan bergerak. Manipulator selari mempunyai beberapa kebaikan tertentu dibandingkan dengan yang bersamaan dengannya. Walaupun ia mempunyai ruang kerja yang sempit, hubungan kinematik kompleks dan titik tunggal tinggi dalam linkungan ruang kerjanya. Dalam kajian ini, kinematik ke hadapan manipulator selari Tricept diselesaikan secara analisa dan pengoptimuman ruang kerja dijalankan. Manipulator selari ini mempunyai darjah kebebasan yang kompleks, yang menyebabkan ia mendorong kepada kehomogenan dimensi matriks Jacobian. Catatan Jacobian dibahagikan kepada unit panjang, dimana ia menghasilkan Jacobian baru yang homogen dimensinya. Tambahan, ruang kerjanya diparameterkan dengan menggunakan beberapa parameter reka bentuk. Kemudian, dengan kaedah GA, ruang kerja mengoptimakan subjek kepada beberapa kekangan geometrik. Akhirnya, kecakatan reka bentuk dinilaikan.Keywords- Kinematic, Workspace, Singularity, Tricept


Robotica ◽  
2021 ◽  
pp. 1-16
Author(s):  
Özgün Selvi

SUMMARY Overconstrained manipulators in lower subspaces with unique motions can be created and analyzed. However, far too little attention has been paid to creating a generic method for overconstrained manipulators kinematic analysis. This study aimed to evaluate a generic methodology for kinematic analysis of overconstrained parallel manipulators with partial subspaces (OPM-PS) using decomposition to parallel manipulators (PMs) in lower subspaces. The theoretical dimensions of the method are depicted, and the use of partial subspace for overconstrained manipulators is portrayed. The methodology for the decomposition method is described and exemplified by designing and evaluating the method to two overconstrained manipulators with 5 degrees of freedom (DoF) and 3 DoF. The inverse kinematic analysis is detailed with position analysis and Jacobian along with the inverse velocity analysis. The workspace analysis for the manipulators using the methodology is elaborated with numerical results. The results of the study show that OPM-PS can be decomposed into PMs with lower subspace numbers. As imaginary joints are being utilized in the proposed methodology, it will create additional data to consider in the design process of the manipulators. Thus, it becomes more beneficial in design scenarios that include workspace as an objective.


Sign in / Sign up

Export Citation Format

Share Document