A Comparative Study of Centrifugal Chiller Performances After CFC Refrigerant Conversion

Author(s):  
K. H. Yang ◽  
S. K. Lee ◽  
Y. S. Chiang ◽  
W. C. Chen ◽  
M. M. Ting

Theoretical analysis indicated that, a typical centrifugal chiller could lose over 8% to 10% of its cooling capacity after converting from R-11 into using R-123 refrigerant. In this study, an attempt to recover some of this capacity loss by slightly decreasing its operating speed was analyzed. A full-scale experiment was performed to change the gear train of a 300 RT centrifugal chillier, which validated that 3%∼6% capacity recovery could be expected. This is a break-through to promote the chiller conversion for wide engineering applications and is discussed in detail in this paper.

2020 ◽  
Vol 177 ◽  
pp. 04003
Author(s):  
Sergey Prostov ◽  
Evgeniy Shabanov

This article presents the main results of the study of electrophysical processes occurring in the zone of electrical processing during the cleaning of soils from oil pollution. The main conclusions are formulated about the processes occurring in the electric processing zone by changing the relative electrical resistance of the soil, which was measured using microprobe sensors. A comparative analysis of the results of a laboratory experiment on the electrochemical cleaning of contaminated soil in a tank is carried out with the results of a full-scale experiment conducted on a plot of a soil mass in real conditions, but artificially contaminated with oil products (gasoline, used oil. Using single measurements of electrical resistivity by microprobe sensors, the spread of the pollutant in the soil was clarified , the relationship between the physical properties of the array and its electrical wire is established conductive properties. Confirmed high efficiency of this type of control in the study of complex processes occurring in the contaminated ground array.


2001 ◽  
Vol 251 (1-2) ◽  
pp. 29-48 ◽  
Author(s):  
S.T.S. Yuen ◽  
Q.J. Wang ◽  
J.R. Styles ◽  
T.A. McMahon

Author(s):  
Tania Ávila-Esquivel ◽  
José Pablo Aguiar-Moya ◽  
Edgar Camacho-Garita ◽  
Luis Loría-Salazar

Sign in / Sign up

Export Citation Format

Share Document