Measurement and Calculation of Nozzle Guide Vane End Wall Heat Transfer

Author(s):  
Neil W. Harvey ◽  
Martin G. Rose ◽  
John Coupland ◽  
Terry Jones

A 3-D steady viscous finite volume pressure correction method for the solution of the Reynolds averaged Navier-Stokes equations has been used to calculate the heat transfer rates on the end walls of a modern High Pressure Turbine first stage stator. Surface heat transfer rates have been calculated at three conditions and compared with measurements made on a model of the vane tested in annular cascade in the Isentropic Light Piston Facility at DERA, Pyestock. The NGV Mach numbers, Reynolds numbers and geometry are fully representative of engine conditions. Design condition data has previously been presented by Harvey and Jones (1990). Off-design data is presented here for the first time. In the areas of highest heat transfer the calculated heat transfer rates are shown to be within 20% of the measured values at all three conditions. Particular emphasis is placed on the use of wall functions in the calculations with which relatively coarse grids (of around 140,000 nodes) can be used to keep computational run times sufficiently low for engine design purposes.

1999 ◽  
Vol 121 (2) ◽  
pp. 184-190 ◽  
Author(s):  
N. W. Harvey ◽  
M. G. Rose ◽  
J. Coupland ◽  
T. V. Jones

A three-dimensional steady viscous finite volume pressure correction method for the solution of the Reynolds-averaged Navier–Stokes equations has been used to calculate the heat transfer rates on the end walls of a modern High Pressure Turbine first-stage stator. Surface heat transfer rates have been calculated at three conditions and compared with measurements made on a model of the vane tested in annular cascade in the Isentropic Light Piston Facility at DERA, Pyestock. The NGV Mach numbers, Reynolds numbers, and geometry are fully representative of engine conditions. Design condition data have previously been presented by Harvey and Jones (1990). Off-design data are presented here for the first time. In the areas of highest heat transfer, the calculated heat transfer rates are shown to be within 20 percent of the measured values at all three conditions. Particular emphasis is placed on the use of wall functions in the calculations with which relatively coarse grids (of around 140,000 nodes) can be used to keep computational run times sufficiently low for engine design purposes.


Author(s):  
J. M. Fougères ◽  
R. Helder

Three-dimensional Navier-Stokes calculations have been performed on various geometries in the presence of discrete-hole injection. The quality of the aerodynamic and thermal predictions of the flow is assessed by comparison to experiments. The code used for the calculations is developed at ONERA and has previously been presented by various authors (Billonnet et al., 1992). It solves the unsteady set of three-dimensional Navier-Stokes equations, completed by a mixing-length turbulence model, using a finite volume technique. The multi-domain approach of the code has facilitated the treatment of this type of geometry. The injection holes are discretized on cylindrical subdomains which overlap the mesh of the main flow. Two applications of the code are presented in this paper. First, a calculation was performed on a row of hot jets injected into a flat plate turbulent boundary layer. Secondly, the code was tested on a plane nozzle guide vane grid with multiple injections. Heat transfer rates, temperature and velocity profiles are compared to experimental data.


1989 ◽  
Vol 56 (1) ◽  
pp. 47-50 ◽  
Author(s):  
C. Y. Wang

Melting of a disk is facilitated by rotation. The problem is governed by a nondimensional parameter α which represents the relative importance of injection (melt) rate and rotation times viscosity. The nonlinear governing equations are solved by perturbations for small α and numerical integration for arbitrary α. Torque and heat transfer rates are found. The solution is one of the rare exact similarity solutions of the Navier-Stokes equations.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Federico Lluesma-Rodríguez ◽  
Francisco Álcantara-Ávila ◽  
María Jezabel Pérez-Quiles ◽  
Sergio Hoyas

One numerical method was designed to solve the time-dependent, three-dimensional, incompressible Navier–Stokes equations in turbulent thermal channel flows. Its originality lies in the use of several well-known methods to discretize the problem and its parallel nature. Vorticy-Laplacian of velocity formulation has been used, so pressure has been removed from the system. Heat is modeled as a passive scalar. Any other quantity modeled as passive scalar can be very easily studied, including several of them at the same time. These methods have been successfully used for extensive direct numerical simulations of passive thermal flow for several boundary conditions.


2010 ◽  
Vol 656 ◽  
pp. 189-204 ◽  
Author(s):  
ILIA V. ROISMAN

This theoretical study is devoted to description of fluid flow and heat transfer in a spreading viscous drop with phase transition. A similarity solution for the combined full Navier–Stokes equations and energy equation for the expanding lamella generated by drop impact is obtained for a general case of oblique drop impact with high Weber and Reynolds numbers. The theory is applicable to the analysis of the phenomena of drop solidification, target melting and film boiling. The theoretical predictions for the contact temperature at the substrate surface agree well with the existing experimental data.


Author(s):  
Younes Menni ◽  
Ahmed Azzi ◽  
A. Chamkha

Purpose This paper aims to report the results of numerical analysis of turbulent fluid flow and forced-convection heat transfer in solar air channels with baffle-type attachments of various shapes. The effect of reconfiguring baffle geometry on the local and average heat transfer coefficients and pressure drop measurements in the whole domain investigated at constant surface temperature condition along the top and bottom channels’ walls is studied by comparing 15 forms of the baffle, which are simple (flat rectangular), triangular, trapezoidal, cascaded rectangular-triangular, diamond, arc, corrugated, +, S, V, double V (or W), Z, T, G and epsilon (or e)-shaped, with the Reynolds number changing from 12,000 to 32,000. Design/methodology/approach The baffled channel flow model is controlled by the Reynolds-averaged Navier–Stokes equations, besides the k-epsilon (or k-e) turbulence model and the energy equation. The finite volume method, by means of commercial computational fluid dynamics software FLUENT is used in this research work. Findings Over the range investigated, the Z-shaped baffle gives a higher thermal enhancement factor than with simple, triangular, trapezoidal, cascaded rectangular-triangular, diamond, arc, corrugated, +, S, V, W, T, G and e-shaped baffles by about 3.569-20.809; 3.696-20.127; 3.916-20.498; 1.834-12.154; 1.758-12.107; 7.272-23.333; 6.509-22.965; 8.917-26.463; 8.257-23.759; 5.513-18.960; 8.331-27.016; 7.520-26.592; 6.452-24.324; and 0.637-17.139 per cent, respectively. Thus, the baffle of Z-geometry is considered as the best modern model of obstacles to significantly improve the dynamic and thermal performance of the turbulent airflow within the solar channel. Originality/value This analysis reports an interesting strategy to enhance thermal transfer in solar air channels by use of attachments with various shapes


Author(s):  
Jacob C. Kaessinger ◽  
Kramer C. Kors ◽  
Jordan S. Lum ◽  
Heather E. Dillon ◽  
Shannon K. Mayer

Convective heat transfer beyond explicit solutions to the Navier Stokes equations is often an empirical science. Schlieren imaging is one of the only fluid imaging systems that can directly visualize the density gradients of a fluid using collimated light and refractive properties. The ability to visualize fluid densities is useful in both research and educational fields. A Schlieren imaging device has been constructed by undergraduate students at the University of Portland. The device is used for professorial heat transfer and fluid dynamics research and to help undergraduates visualize and understand natural convection. This paper documents the design decisions, design process, and the final specifications of the Schlieren system. A simple 2-D heated cylindrical model is considered and evaluated using Schlieren imaging, OpenFOAM C.F.D. simulation, and convection analysis using a Nusselt correlation. Results are presented for the three analysis techniques and show excellent verifications between the CFD simulation, Nusselt correlation, and Schlieren imaging system.


1993 ◽  
Vol 115 (1) ◽  
pp. 110-117 ◽  
Author(s):  
M. Giles ◽  
R. Haimes

This paper describes and validates a numerical method for the calculation of unsteady inviscid and viscous flows. A companion paper compares experimental measurements of unsteady heat transfer on a transonic rotor with the corresponding computational results. The mathematical model is the Reynolds-averaged unsteady Navier–Stokes equations for a compressible ideal gas. Quasi-three-dimensionality is included through the use of a variable streamtube thickness. The numerical algorithm is unusual in two respects: (a) For reasons of efficiency and flexibility, it uses a hybrid Navier–Stokes/Euler method, and (b) to allow for the computation of stator/rotor combinations with arbitrary pitch ratio, a novel space–time coordinate transformation is used. Several test cases are presented to validate the performance of the computer program, UNSFLO. These include: (a) unsteady, inviscid flat plate cascade flows (b) steady and unsteady, viscous flat plate cascade flows, (c) steady turbine heat transfer and loss prediction. In the first two sets of cases comparisons are made with theory, and in the third the comparison is with experimental data.


Sign in / Sign up

Export Citation Format

Share Document