scholarly journals Experimental Development of a Jet Injection Model for Rotating Stall Control

Author(s):  
Huu Duc Vo ◽  
James D. Paduano

The effectiveness of jet actuation for active modal control of rotating stall is investigated experimentally. The dominant physical effects of injection, such as momentum and mass addition, are elucidated. The results indicate that several of the theoretical assumptions used in past studies of jet injection for rotating stall control must be revised. An updated model of the compression system with jet actuation which allows for the effect of control feedback dynamics to be adequately characterized is developed and verified with forced response measurements. It predicts the right trends of movement of the critical pole. Preliminary active control results are presented, among which is a 5.5% range extension in downstream flow coefficient.

2007 ◽  
Vol 2007 ◽  
pp. 1-15 ◽  
Author(s):  
Huu Duc Vo

An analytical and experimental investigation of the effectiveness of full-span distributed jet actuation for active suppression of long length-scale rotating stall inception is carried out. Detailed modeling and experimental verification highlight the important effects of mass addition, discrete injectors, and feedback dynamics, which may be overlooked in preliminary theoretical studies of active control with jet injection. A model of the compression system incorporating nonideal injection and feedback dynamics is verified with forced response measurements to predict the right trends in the movement of the critical pole associated with the stall precursor. Active control experiments with proportional feedback control show that the predicted stall precursors are suppressed to give a 5.5% range extension in compressor flow coefficient. In addition, results suggest that the proposed model could be used to design a more sophisticated controller to further improve performance while reducing actuator bandwidth requirements.


Author(s):  
Joel M. Haynes ◽  
Gavin J. Hendricks ◽  
Alan H. Epstein

A three-stage, low speed axial research compressor has been actively stabilized by damping low amplitude circumferentially travelling waves which can grow into rotating stall. Using a circumferential array of hot wire sensors, and an array of high speed individually positioned control vanes as the actuator, the first and second spatial harmonics of the compressor were stabilized down to a characteristic slope of 0.9, yielding an 8% increase in operating flow range. Stabilization of the third spatial harmonic did not alter the stalling flow coefficient. The actuators were also used open loop to determine the forced response behavior of the compressor. A system identification procedure applied to the forced response data then yielded the compressor transfer function. The Moore-Greitzer, 2-D, stability model was modified as suggested by the measurements to include the effect of blade row time lags on the compressor dynamics. This modified Moore-Greitzer model was then used to predict both the open and closed loop dynamic response of the compressor. The model predictions agreed closely with the experimental results. In particular, the model predicted both the mass flow at stall without control and the design parameters needed by, and the range extension realized from, active control.


1994 ◽  
Vol 116 (2) ◽  
pp. 226-239 ◽  
Author(s):  
J. M. Haynes ◽  
G. J. Hendricks ◽  
A. H. Epstein

A three-stage, low-speed axial research compressor has been actively stabilized by damping low-amplitude circumferentially traveling waves, which can grow into rotating stall. Using a circumferential array of hot-wire sensors, and an array of highspeed individually positioned control vanes as the actuator, the first and second spatial harmonics of the compressor were stabilized down to a characteristic slope of 0.9, yielding an 8 percent increase in operating flow range. Stabilization of the third spatial harmonic did not alter the stalling flow coefficient. The actuators were also used open loop to determine the forced response behavior of the compressor. A system identification procedure applied to the forced response data then yielded the compressor transfer function. The Moore-Greitzer two-dimensional stability model was modified as suggested by the measurements to include the effect of blade row time lags on the compressor dynamics. This modified Moore-Greitzer model was then used to predict both the open and closed-loop dynamic response of the compressor. The model predictions agreed closely with the experimental results. In particular, the model predicted both the mass flow at stall without control and the design parameters needed by, and the range extension realized from, active control.


Author(s):  
Adam R. Hickman ◽  
Scott C. Morris

Flow field measurements of a high-speed axial compressor are presented during pre-stall and post-stall conditions. The paper provides an analysis of measurements from a circumferential array of unsteady shroud static pressure sensors during stall cell development. At low-speed, the stall cell approached a stable size in approximately two rotor revolutions. At higher speeds, the stall cell developed within a short amount of time after stall inception, but then fluctuated in circumferential extent as the compressor transiently approached a stable post-stall operating point. The size of the stall cell was found to be related to the annulus average flow coefficient. A discussion of Phase-Locked Average (PLA) statistics on flow field measurements during stable operation is also included. In conditions where rotating stall is present, flow field measurements can be Double Phase-Locked Averaged (DPLA) using a once-per-revolution (1/Rev) pulse and the period of the stall cell. The DPLA method provides greater detail and understanding into the structure of the stall cell. DPLA data indicated that a stalled compressor annulus can be considered to contained three main regions: over-pressurized passages, stalled passages, and recovering passages. Within the over-pressured region, rotor passages exhibited increased blade loading and pressure ratio compared to pre-stall values.


Author(s):  
G. Ferrara ◽  
L. Ferrari ◽  
C. P. Mengoni ◽  
M. De Lucia ◽  
L. Baldassarre

Extensive research on centrifugal compressors has been planned. The main task of the research is to improve present prediction criteria coming from the literature with particular attention to low flow coefficient impellers (low width to radius ratios) where they are no more valid. Very little data has been published for this kind of stages, especially for the last stage configuration (with discharge volute). Many experimental tests have been planned to investigate different configurations. A simulated stage with a backward channel upstream, a 2D impeller with a vaneless diffuser and a constant cross section volute downstream constitute the basic configuration. Several diffuser types with different widths, pinch shapes and diffusion ratios were tested. The effect of geometric parameters on stage stability has been discussed inside part I of the present work; the purpose of this part of the work is to illustrate the effect of the same geometric parameters on stage performance and to quantify the impact of stability improvements on stage losses.


2000 ◽  
Vol 123 (3) ◽  
pp. 464-472 ◽  
Author(s):  
Z. S. Spakovszky ◽  
J. D. Paduano ◽  
R. Larsonneur ◽  
A. Traxler ◽  
M. M. Bright

Magnetic bearings are widely used as active suspension devices in rotating machinery, mainly for active vibration control purposes. The concept of active tip-clearance control suggests a new application of magnetic bearings as servo-actuators to stabilize rotating stall in axial compressors. This paper presents a first-of-a-kind feasibility study of an active stall control experiment with a magnetic bearing servo-actuator in the NASA Glenn high-speed single-stage compressor test facility. Together with CFD and experimental data a two-dimensional, incompressible compressor stability model was used in a stochastic estimation and control analysis to determine the required magnetic bearing performance for compressor stall control. The resulting requirements introduced new challenges to the magnetic bearing actuator design. A magnetic bearing servo-actuator was designed that fulfilled the performance specifications. Control laws were then developed to stabilize the compressor shaft. In a second control loop, a constant gain controller was implemented to stabilize rotating stall. A detailed closed loop simulation at 100 percent corrected design speed resulted in a 2.3 percent reduction of stalling mass flow, which is comparable to results obtained in the same compressor by Weigl et al. (1998. ASME J. Turbomach. 120, 625–636) using unsteady air injection. The design and simulation results presented here establish the viability of magnetic bearings for stall control in aero-engine high-speed compressors. Furthermore, the paper outlines a general design procedure to develop magnetic bearing servo-actuators for high-speed turbomachinery.


Automatica ◽  
1998 ◽  
Vol 34 (4) ◽  
pp. 437-443 ◽  
Author(s):  
XIANG CHEN ◽  
GUOXIANG GU ◽  
PHILLIP MARTIN ◽  
KEMIN ZHOU
Keyword(s):  

2000 ◽  
Author(s):  
Craig A. Buhr ◽  
Matthew A. Franchek ◽  
Sanford Fleeter

Abstract Presented in this paper is an analytical study evaluating the closed loop stability of rotating stall control in an axial flow compressor subject to a nonlinear spatial actuation constraint that limits the amplitude of a spatial mode input. Absolute stability of the rotating stall control system is investigated by applying the circle criterion to a linearized model of an axial compressor in series with the saturation element. This stability analysis is then used to design the gain and phase of the ‘classical’ complex gain feedback control law. Resulting is a systematic method for designing the parameters of the complex gain control law which increases the region of absolute stability guaranteed by the circle criterion for the closed-loop system.


Sign in / Sign up

Export Citation Format

Share Document