servo actuator
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 27)

H-INDEX

12
(FIVE YEARS 2)

2022 ◽  
Vol 960 (1) ◽  
pp. 012013
Author(s):  
A Danlos ◽  
P Podevin ◽  
M Deligant ◽  
A Clenci ◽  
P Punov ◽  
...  

Abstract Surge is an unstable phenomenon appearing when a valve closing reduces the compressor flow rate. This phenomenon is avoided for automotive turbochargers by defining a surge margin during powertrain system design. This surge margin established with measurements in steady state testing regime limits the maximal engine torque at low levels of output. An active control of the compressor could reduce the surge margin and facilitate a transient compressor operation for a short time in surge zone. In this paper, an experimental study of the transient operation of a turbocharger compressor entering the surge zone is performed. Control of the turbocharger speed is sought to avoid unsteady operation using the variable geometry turbine (VGT) nozzle actuator. From a given stable operating point, surge is induced by reducing the opening of a valve located downstream of the compressor air circuit. The effect of reducing the speed of rotation by controlling the VGT valve is investigated, as this should lead to more stable compressor operation. The rotation speed of the turbocharger is controlled to avoid an unstable operating point using servo-actuator of variable geometry turbine. From a stable operating point, the surge appearance is caused by closing a butterfly valve downstream the air circuit of the compressor. The effect on the compressor rotation speed when the opening of variable geometry turbocharger valve is modified is studied. Measurements have been conducted for different control profiles of the VGT valve placed downstream the compressor. This article presents the means used to carry out these tests as well as the results of the measurements of the instantaneous signals of pressure, temperature, flow rate and rotation speed, allowing the analysis of the surge phenomenon.


2021 ◽  
Vol 56 (5) ◽  
pp. 362-369
Author(s):  
Lafta E. J. Alkurawy ◽  
Adham H. Saleh ◽  
Ibraheem S. Fatah

The actuator of the vane servo unit epitomizes the control operator of force in systems of missile control, where the character of its dynamic and static plays a significant role in the missile behavior. Therefore, improving the dynamic behavior for the vane servo actuator is of main interest for designing control and guidance system. The article describes a new method of analyzing the mathematical model of the nonlinear pneumatic servo with different design parameters and designing a controller with these parameters. The robust control regulates the system with different parameters, and it is the first controller to attempt this technique. A servo actuator of nonlinear and linear simulators was constructed by MATLAB software package. Feedback controllers with PI and PID were designed and tested theoretically. The setting time and the behavior of the dynamic will be improved. The robust feedforward control was applied to the system to improve the stability and zero steady-state error and compare the results with PI and PID controller. Their tests showed that robust control is the best control for stability among the others.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6464
Author(s):  
Wensen Zhang ◽  
Jian Fu ◽  
Yongling Fu ◽  
Jinlin Zhou ◽  
Xudong Han

With the development of more/all electric aircraft, replacement of the traditional hydraulic servo actuator (HSA) with an electromechanical actuator (EMA) is becoming increasingly attractive in the aerospace field. This paper takes an EMA for a trimmable horizontal stabilizer as an example and focuses on how to establish a system model with an appropriate level of complexity to support the model-based system engineering (MBSE) approach. To distinguish the nonlinear effects that dominate the required system performance, an incremental approach is proposed to progressively introduce individual nonlinear effects into models with different complexity levels. Considering the special design and working principle of the mechanical power transmission function for this actuator, the nonlinear dynamics, including friction and backlash from the no-back mechanism, and the nonlinear compliance effect from the mechanical load path are mainly taken into consideration. The modelling principles for each effect are addressed in detail and the parameter identification method is utilized to model these nonlinear effects realistically. Finally, the responses from each model and experimental results are compared to analyze and verify how each individual nonlinearity affects the system’s performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhenshuai Wan ◽  
Yu Fu

Hydraulic servo actuator always suffers from various disturbance and uncertainties, which makes it difficult to design a higher performance controller. In this paper, an integral nonsingular terminal sliding mode controller based on extended state observer (ESO-INTSM) is proposed to improve the robust performance of hydraulic servo actuator. The ESO is designed to estimate not only the parametric uncertainties but also the model disturbance. Based on the observed states of ESO, the proposed controllers could enable hydraulic servo actuator to track the desired motion trajectories. The stability of the synthesized controller is proved via Lyapunov analysis, which is very important for high-accuracy tracking control of hydraulic servo actuator. Simulation and experimental results demonstrate that the proposed control strategy can effectively attenuate the adverse influence caused by the uncertainties and apparently improve the tracking accuracy.


2021 ◽  
Vol 1172 (1) ◽  
pp. 012037
Author(s):  
E E Ibrahim ◽  
T Elnady ◽  
I Saleh ◽  
S Hassan

2021 ◽  
Vol 1986 (1) ◽  
pp. 012137
Author(s):  
SiLu Chen ◽  
Zhanwei Li ◽  
Qing Zhang

2021 ◽  
Vol 39 (2A) ◽  
pp. 248-259
Author(s):  
Anmar F. Abd ◽  
Shibly A. Al-Samarraie

This paper proposes the use of the integral sliding mode control (ISMC) based on the barrier function to control the servo actuator system with friction.  Based on the barrier function, the main features of the ISMC design were preserved, additionally, the proposed control design is done without the need to know the bound on the system model uncertainty, accordingly, the overestimation of the control gain doesn’t take place and the chattering is eliminated. Moreover, the steady-state error can be adjusted via selecting the barrier function parameter only. The simulation results demonstrate the performance of the proposed ISMC based on the barrier function where the system angle successfully follows the desired angular position with a small pre-adjusted steady-state error. Additionally, the obtained results clarify superior features compared with a traditional ISMC designed to the same actuator.


Sign in / Sign up

Export Citation Format

Share Document