Some Consideration on the Aerodynamic Design of Blast Wave Simulator Using a Shock Tube System

Author(s):  
Suguru Kushida ◽  
Kengo Asada ◽  
Kozo Fujii ◽  
Tomoaki Tatsukawa ◽  
Kazuyuki Sakamoto

Abstract Reduction methods of the jet flow associated with simulated blast waves by blast wave simulators are investigated by computational simulations. First, the cause of the jet flow is discussed. After that, the influence of the nozzle angle and the volume of the driver section on the jet flow are investigated. The obtained results show that the jet flow is caused by vortices which are generated at the edge of the nozzle and that the jet can be reduced by decreasing the driver section. Furthermore, the nozzle with the moderate angle reduces the jet flow near the nozzle exit and the nozzle with the widest angle reduces the jet flow far from the nozzle exit. These results indicate reducing the driver section and using the proper nozzle angle according to the distance from the nozzle exit are effective for reducing the jet flow.


Author(s):  
Christopher Ostoich ◽  
Mark Rapo ◽  
Brian Powell ◽  
Humberto Sainz ◽  
Philemon Chan

Traumatic brain injury (TBI) has been recognized as the signature wound of the current conflicts and it has been hypothesized that blast overpressure can contribute a significant pathway to TBI. As such, there are many ongoing research efforts to understand the mechanism to blast induced TBI, which all require blast testing using physical and biological surrogates either in the field or in the laboratory. The use of shock tubes to generate blast-like pressure waves in a laboratory can effectively produce the large amounts of data needed for research into blast induced TBI. A combined analytical, computational, and experimental approach was developed to design an advanced shock tube capable of generating high quality out-of-tube blast waves. The selected tube design was fabricated and laboratory tests at various blast wave levels were conducted. Comparisons of tube-generated laboratory data with explosive-generated field data indicated that the shock tube could accurately reproduce blast wave loading on test surrogates. High fidelity blast wave simulation in the laboratory presents an avenue to rapidly and inexpensively generate the large volumes of data necessary to validate and develop theories linking blast exposure to TBI.



2017 ◽  
Vol 139 (11) ◽  
Author(s):  
Jacques Massoni ◽  
Laurent Biamino ◽  
Georges Jourdan ◽  
Ozer Igra ◽  
Lazhar Houas

The present work shows that weak blast waves that are considered as being harmless can turn to become fatal upon their reflections from walls and corners inside a building. In the experimental part, weak blast waves were generated by using an open-end shock tube. A three level building model was placed in vicinity to the open-end of the used shock tube. The evolved wave pattern inside the building rooms was recorded by a sequence of schlieren photographs; also pressure histories were recorded on the rooms' walls. In addition, numerical simulations of the evolved flow field inside the building were conducted. The good agreement obtained between numerical and experimental results shows the potential of the used code for identifying safe and dangerous places inside the building rooms penetrated by the weak blast wave.



2021 ◽  
Author(s):  
Parker Zieg ◽  
John Benson ◽  
Yang Liu

Abstract Due to the extensive use of explosive devices in military conflicts, there has been a dramatic increase in life-threatening injuries and resultant death toll caused by explosive blasts. In an attempt to better understand the blast waves and mitigate the damages caused by such blast waves, various devices/systems have been developed to replicate the field blast scenarios in laboratory conditions. The East Carolina University Advanced Blast Wave Simulator (i.e., ECU-ABWS) is one such facility that can reproduce blast waves of various shapes and profiles. The peak overpressure of a blast is the key factor that causes the greatest number of damages, and it is essentially determined by the burst pressure of the blast. Therefore, a better understanding of the effects of burst pressure on blast generation and development is strongly desired to develop safer and more effective blast mitigation technologies. In the present study, a series of experiments were carried out in the ECU-ABWS to characterize the blast waves generated under different burst pressure conditions. While the incident (side-on) pressures at multiple locations along the blast propagation direction were measured using a temporally-resolved multi-point pressure sensing system, the time-evolutions of blast wave profiles were also qualitatively revealed by using a high-speed Schlieren imaging system. The synchronization of pressure sensing and Schlieren image acquisition enables us to extract more physical details of the dynamic blast wave development under different burst pressure conditions by associating the incident pressures and shock wave morphologies. In this study, the different burst pressures were achieved by altering the thickness of the membrane separating the driver section of pressurized gas and the driven section of air at atmospheric pressure. It is found that there is a linear relationship between the burst pressure and the peak overpressure. As the burst pressure increases (by increasing the membrane thickness), more clearly defined shock wavefronts are also observed along with the peak overpressure increase.





1985 ◽  
Vol 158 ◽  
pp. 137-152
Author(s):  
M. Sanai ◽  
H. E. Lindberg ◽  
J. D. Colton

We have developed a compact and cost-effective shock tube to simulate the static and dynamic pressures of blast waves. The shock tube is open at both ends and is driven by high explosives distributed over a finite length of the tube near one end. The overall charge length is determined by the simulation time of interest, and the charge-density distribution is tailored to produce the pressure-waveform shape desired. For the shock tube to simulate a typical blast wave, the charge density must be highest at the charge front (closest to the test section) and gradually reduced towards the back. The resulting shock tube is an order of magnitude shorter than a conventional dynamic airblast simulator (DABS) in which concentrated explosives are used to drive the shock.Tailored charges designed using this method were built and tested in a simulation development programme sponsored by the U.S. Defense Nuclear Agency (DNA). The pressures measured for several charge distributions agreed very well with SRI's PUFF hydrocode computations and demonstrated the feasibility of the compact simulator under realistic test conditions.



2021 ◽  
Author(s):  
Sunil Sutar ◽  
Shailesh Ganpule

The response of the brain to the explosion induced primary blast waves is actively sought. Over the past decade, reasonable progress has been made in the fundamental understanding of bTBI using head surrogates and animal models. Yet, the current understanding of how blast waves interact with the human is in nascent stages, primarily due to lack of data in humans. The biomechanical response in human is critically required so that connection to the aforementioned bTBI models can be faithfully established. Here, using a detailed, full-body human model, we elucidate the biomechanical cascade of the brain under a primary blast. The input to the model is incident overpressure as achieved by specifying charge mass and standoff distance through ConWep. The full-body model allows to holistically probe short- (<5 ms) and long-term (200 ms) brain biomechanical responses. The full-body model has been extensively validated against impact loading in the past. In this work, we validate the head model against blast loading. We also incorporate structural anisotropy of the brain white matter. Blast wave human interaction is modeled using a conventional weapon modeling approach. We demonstrate that the blast wave transmission, linear and rotational motion of the head are dominant pathways for the biomechanical loading of the brain, and these loading paradigms generate distinct biomechanical fields within the brain. Blast transmission and linear motion of the head govern the volumetric response, whereas the rotational motion of the head governs the deviatoric response. We also observe that blast induced head rotation alone produces a diffuse injury pattern in white matter fiber tracts. Lastly, we find that the biomechanical response under blast is comparable to the impact event. These insights will augment laboratory and clinical investigations of bTBI and help devise better blast mitigation strategies.





Measurement ◽  
2020 ◽  
Vol 149 ◽  
pp. 107015 ◽  
Author(s):  
Kuan Diao ◽  
Zhenjian Yao ◽  
Zhongyu Wang ◽  
Xiaojun Liu ◽  
Chenchen Wang ◽  
...  


2019 ◽  
Vol 11 (2) ◽  
pp. 135-158 ◽  
Author(s):  
Ahmed Ismail ◽  
Mohamed Ezzeldin ◽  
Wael El-Dakhakhni ◽  
Michael Tait

With the increased frequency of accidental and deliberate explosions, evaluating the response of civil infrastructure systems to blast loading has been attracting the interests of the research and regulatory communities. However, with the high cost and complex safety and logistical issues associated with field explosives testing, North American blast-resistant construction standards (e.g. ASCE 59-11 and CSA S850-12) recommend the use of shock tubes to simulate blast loads and evaluate relevant structural response. This study first aims at developing a simplified two-dimensional axisymmetric shock tube model, implemented in ANSYS Fluent, a computational fluid dynamics software, and then validating the model using the classical Sod’s shock tube problem solution, as well as available shock tube experimental test results. Subsequently, the developed model is compared to a more complex three-dimensional model and the results show that there is negligible difference between the two models for axisymmetric shock tube performance simulation; however, the three-dimensional model is necessary to simulate non-axisymmetric shock tubes. Following the model validation, extensive analyses are performed to evaluate the influences of shock tube design parameters (e.g. the driver section pressure and length and the expansion section length) on blast wave characteristics to facilitate a shock tube design that would generate shock waves similar to those experienced by civil infrastructure components under blast loads. The results show that the peak reflected pressure increases as the driver pressure increases, while a decrease in the expansion length increases the peak reflected pressure. In addition, the positive phase duration increases as both the driver length and expansion length are increased. Finally, the developed two-dimensional axisymmetric model is used to optimize the dimensions of a physical large-scale conical shock tube system constructed for civil infrastructure component blast response evaluation applications. The capabilities of such shock tube system are further investigated by correlating its design parameters to a range of explosion threats identified by different hemispherical TNT charge weight and distance scenarios.



Author(s):  
Aravind Sundaramurthy ◽  
Raj K. Gupta ◽  
Namas Chandra

Detonation of a high explosive (HE) produces shock-blast wave, noise, shrapnel, and gaseous product; while direct exposure to blast is a concern near the epicenter; shock-blast can affect subjects even at farther distances. The latter is characterized as the primary blast with blast overpressure, time duration, and impulse as shock-blast wave parameters (SWPs). These parameters in turn are a function of the strength of the HE and the distance from the epicenter. It is extremely important to carefully design and operate the shock tube to produce a field relevant SWPs. In this work, we examine the relationship between shock tube adjustable parameters (SAPs) and SWPs to deduce relationship that can be used to control the blast profile and emulate the field conditions. In order to determine these relationships, 30 experiments by varying the membrane thickness, breech length (66.68 to 1209.68 mm) and measurement location was performed. Finally, ConWep was utilized for the comparison of TNT shock-blast profiles with the profiles obtained from shock tube. From these experiments, we observed the following: (a) burst pressure increases with increase in the number of membrane used (membrane thickness) and does not vary significantly with increase in the breech length; (b) within the test section, overpressure and Mach number increases linearly with increase in the burst pressure; however, positive time duration increases with increase in the breech length; (c) near the exit of the shock tube, there is a significant reduction in the positive time duration (PTD) regardless of the breech length.



Sign in / Sign up

Export Citation Format

Share Document