Experimental Analysis of a Liquid-Gas Two-Phase Flow in a Flow Distributor

Author(s):  
Luiz H. M. Lino ◽  
Henrique K. Eidt ◽  
Carolina C. Rodrigues ◽  
Cesar Y. Ofuchi ◽  
Paulo H. D. Santos ◽  
...  

Abstract The main goal of this work is to analyze the efficiency of a two-phase flow distribution system for different operational conditions, which was designed and built by the Multiphase Flow Research Center (NUEM). The distribution system is composed of a two tangential inlets, a cyclonic chamber, and four outlets. The working principle of this apparatus is based on the combined action of centrifugal and gravitational forces, which causes the development of a liquid film, facilitating the flow distribution. Four outlets are located perpendicularly to the cyclonic chamber in order to distribute the flow equally to some extent. Experimental tests were performed using water and air in a vertical 52-mm ID acrylic pipe. Two flow patterns (bubble and slug) at the input of the inlets were visually identified through the use of a high-speed camera. To verify the flow distribution, wire-mesh sensors were installed at each outlet and graduated beakers and a timer was used in order to estimate the liquid volume flowing at the outlets. The results showed that the flow distribution system has a satisfactory efficiency of distribution.

Author(s):  
Lissett Barrios ◽  
Mauricio Gargaglione Prado

Dynamic multiphase flow behavior inside a mixed flow Electrical Submersible Pump (ESP) has been studied experimentally and theoretically for the first time. The overall objectives of this study are to determine the flow patterns and bubble behavior inside the ESP and to predict the operational conditions that cause surging. An experimental facility has been designed and constructed to enable flow pattern visualization inside the second stage of a real ESP. Special high speed instrumentation was selected to acquire visual flow dynamics and bubble size measurements inside the impeller channel. Experimental data was acquired utilizing two types of tests (surging test and bubble diameter measurement test) to completely evaluate the pump behavior at different operational conditions. A similarity analysis performed for single-phase flow inside the pump concluded that viscosity effects are negligible compared to the centrifugal field effects for rotational speeds higher than 600 rpm. Therefore, the two-phase flow tests were performed for rotational speeds of 600, 900, 1200, and 1500 rpm. Results showed formation of a large gas pocket at the pump intake during surging conditions.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Lissett Barrios ◽  
Mauricio Gargaglione Prado

Dynamic multiphase flow behavior inside a mixed flow electrical submersible pump (ESP) has been studied experimentally and theoretically for the first time. The overall objectives of this study are to determine the flow patterns and bubble behavior inside the ESP and to predict the operational conditions that cause surging. An experimental facility has been designed and constructed to enable flow pattern visualization inside the second stage of a real ESP. Special high-speed instrumentation was selected to acquire visual flow dynamics and bubble size measurements inside the impeller channel. Experimental data were acquired utilizing two types of tests (surging test and bubble diameter measurement test) to completely evaluate the pump behavior at different operational conditions. A similarity analysis performed for single-phase flow inside the pump concluded that viscosity effects are negligible compared to the centrifugal field effects for rotational speeds higher than 600 rpm. Therefore, the two-phase flow tests were performed for a rotational speeds of 600, 900, 1200, and 1500 rpm. Results showed formation of a large gas pocket at the pump intake during surging conditions.


Author(s):  
Kazuyuki Takase ◽  
Hiep H. Nguyen ◽  
Gaku Takase ◽  
Yoshihisa Hiraki

Clarifying two-phase flow characteristics in a nuclear reactor core is important in particular to enhance the thermo-fluid safety of nuclear reactors. Moreover, bubbly flow data in subchannels with spacers are needed as validation data for current CFD codes like a direct two-phase flow analysis code. In order to investigate the spacer effect on the bubbly flow behavior in a subchannel of the nuclear reactor, bubble dynamics around the simply simulated spacer was visually observed by a high speed camera. Furthermore, the void fraction and interfacial velocity distributions just behind the simulated spacer were measured quantitatively by using a wire-mesh sensor system with three wire-layers in the flow direction. From the present study, bubble separation behavior dependence upon the spacer shape was clarified.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 193 ◽  
Author(s):  
César Y. Ofuchi ◽  
Henrique K. Eidt ◽  
Carolina C. Rodrigues ◽  
Eduardo N. Dos Santos ◽  
Paulo H. D. Dos Santos ◽  
...  

Wire-mesh sensors are used to determine the phase fraction of gas–liquid two-phase flow in many industrial applications. In this paper, we report the use of the sensor to study the flow behavior inside an offshore oil and gas industry device for subsea phase separation. The study focused on the behavior of gas–liquid slug flow inside a flow distribution device with four outlets, which is part of the subsea phase separator system. The void fraction profile and the flow symmetry across the outlets were investigated using tomographic wire-mesh sensors and a camera. Results showed an ascendant liquid film in the cyclonic chamber with the gas phase at the center of the pipe generating a symmetrical flow. Dispersed bubbles coalesced into a gas vortex due to the centrifugal force inside the cyclonic chamber. The behavior favored the separation of smaller bubbles from the liquid bulk, which was an important parameter for gas-liquid separator sizing. The void fraction analysis of the outlets showed an even flow distribution with less than 10% difference, which was a satisfactorily result that may contribute to a reduction on the subsea gas–liquid separators size. From the outcomes of this study, detailed information regarding this type of flow distribution system was extracted. Thereby, wire-mesh sensors were successfully applied to investigate a new type of equipment for the offshore oil and gas industry.


Author(s):  
Kamil Abbas ◽  
Lan Haijian ◽  
Yu Ting ◽  
Zhou Shiliang ◽  
Muhammad Ali Shahzad

The main concern of this research is the two phase flow, which consist of air bubbles submersed in water in reactors cores. The understanding of these such flow activities is paramount to finding out about the efficiency of the process and for safety concerns. This knowledge is also important to control and monitor the flow at the spot or online. The employed method is based on the conductivity principle, and it was chosen because of the cheapness of the circuitry involved for implementation, as compared to other imaging techniques. Keeping this in mind, it provides an excellent temporal and spatial resolution for measurement. To fulfill this requirement, a small testing facility was designed and developed. The circuits were made and then tested by making PCBs. To prevent environmental noises and electromagnet disturbance, the apparatus was shielded to the best of ability, in accordance with the available resources. A wire mesh sensor with sixteen inputs and outputs respectively was made and put in a vertical glass section with water and air filled inside. The bubbles were generated by external means and the signal interference was noted in the collection section. The signals were collected by a data acquisition card and further manipulated in a software program. The data was first taken in the LabVIEW software and then transferred to MATLAB for analysis and image reconstruction. Basically, the main system included wire mesh, the circuit for excitation, the circuit for data collection and data acquisition card connected to a computer. The results were compared with a high speed camera which was linked in synchronization with the software. In these circuit designs, the maximum efficiency was ensured while keeping the cost low. The sensor is surrounded by glass so that the high speed camera could also be used to compare results. The use of the high speed data acquisition card also enabled to deal with real time acquisition without any problem. Unfortunately, this facility could not be tested in rigorous conditions like high temperature and pressure because of limited resources. The conclusions drawn from these experiments are that wire mesh sensors indeed provide temporal resolution of about 1000 frames/s with a good spatial resolution and is also a lot cheaper in comparison with other techniques.


Author(s):  
Carlos E. F. do Amaral ◽  
O´liver B. S. Scorsim ◽  
Eduardo N. Santos ◽  
Marco Jose´ da Silva ◽  
Marco Germano Conte ◽  
...  

Two phase flow occurs in many industrial applications, mainly in the transport of mixtures. Many patterns can be produced according to the liquid and gas flow rates. The identification of these patterns is very important in the design of piping systems and equipments. This work proposes an experimental study to identify multiphase flow patterns of water and air in horizontal pipes. The study was developed using an experimental circuit of 26 mm diameter and 9.2 m length pipe, at Thermal Sciences Lab (LACIT) at the Federal University of Technology - Parana´. To characterize the flow patterns, an intrusive mesh electrodes sensor was used, which allows the detailed visualization of the phases distribution. Tests were made using several experimental settings of water and gas flow rates. Measurements were compared to images obtained by high speed camera and the temporal void fraction series which were analyzed with the use of PDF and PSD functions, showing the singularities for each two-phase flow pattern.


Author(s):  
Niccolo Giannetti ◽  
Mark A.B. Redo ◽  
Kiyoshi Saito ◽  
Hiroaki Yoshimura

Author(s):  
Lissett Barrios ◽  
Stuart Scott ◽  
Charles Deuel

The paper reports on developmental research on the effects of viscosity and two phases, liquid–gas fluids on ESPs which are multi stage centrifugal pumps for deep bore holes. Multiphase viscous performance in a full-scale Electrical Submersible Pump (ESP) system at Shell’s Gasmer facility has been studied experimentally and theoretically. The main objectives is to predict the operational conditions that cause degradations for high viscosity fluids when operating in high Gas Liquid Radio (GLR) wells to support operation in Shell major Projects. The system studied was a 1025 series tandem WJE 1000. The test was performed using this configuration with ten or more pump stages moving fluids with viscosity from 2 to 200 cP at various speed, intake pressure and Gas Void Fractions (GVF). For safety considerations the injected gas was restricted to nitrogen or air. The ESP system is a central artificial lift method commonly used for medium to high flow rate wells. Multiphase flow and viscous fluids causes problems in pump applications. Viscous fluids and free gas inside an ESP can cause head degradation and gas locking. Substantial attempts have been made to model centrifugal pump performance under gas-liquid viscous applications, however due to the complexity this is still a uncertain problem. The determination of the two-phase flow performance in these harmful conditions in the ESP is fundamental aspects in the surveillance operation. The testing at Shell’s Gasmer facility revealed that the ESP system performed as theoretical over the range of single flowrates and light viscosity oils up to Gas Volume Fractions (GVF) around 25%. The developed correlations predict GVF at the pump intake based on the operational parameters. ESP performance degrades at viscosity higher than 100cp as compared to light oil applications, gas lock condition is observed at gas fraction higher than 45%. Pump flowrate can be obtained from electrical current and boost for all range of GVF and speed. The main technical contributions are the analysis of pump head degradation under two important variables, high viscosity and two-phase flow inside the ESP.


Author(s):  
Jacqueline Barber ◽  
Khellil Sefiane ◽  
David Brutin ◽  
Lounes Tadrist

Boiling in microchannels remains elusive due to the lack of full understanding of the mechanisms involved. A powerful tool in achieving better comprehension of the mechanisms is detailed imaging and analysis of the two phase flow at a fundamental level. We induced boiling in a single microchannel geometry (hydraulic diameter 727 μm), using a refrigerant FC-72, to investigate several flow patterns. A transparent, metallic, conductive deposit has been developed on the exterior of rectangular microchannels, allowing simultaneous uniform heating and visualisation to be conducted. The data presented in this paper is for a particular case with a uniform heat flux of 4.26 kW/m2 applied to the microchannel and inlet liquid mass flowrate, held constant at 1.33×10−5 kg/s. In conjunction with obtaining high-speed images and videos, sensitive pressure sensors are used to record the pressure drop profiles across the microchannel over time. Bubble nucleation, growth and coalescence, as well as periodic slug flow, are observed in the test section. Phenomena are noted, such as the aspect ratio and Reynolds number of a vapour bubble, which are in turn correlated to the associated pressure drops over time. From analysis of our results, images and video sequences with the corresponding physical data obtained, it is possible to follow visually the nucleation and subsequent both ‘free’ and ‘confined’ growth of a vapour bubble over time.


Sign in / Sign up

Export Citation Format

Share Document