Molecular Dynamics Simulation of Homogeneous and Heterogeneous Thermal Bubble Nucleation

Author(s):  
Min Chen ◽  
Yunfei Chen ◽  
Juekuan Yang ◽  
Yandong Gao ◽  
Deyu Li

Thermal bubble nucleation was studied using molecular dynamics for both homogeneous and heterogeneous systems using isothermal-isobaric (NPT) and isothermal-isostress (NPzzT) ensembles. Simulation results indicate that homogeneous thermal bubble nucleation is induced from cavities occurring spontaneously in the liquid when the temperature exceeds the superheat limit. In contrast to published results using NVE and NVT ensembles, no stable nanoscale bubble exists in NPT ensembles, but instead, the whole system changes into vapor phase. For a heterogeneous system composed of a nanochannel with an initial distance of 3.49 nm between the two solid plates, it is found that if the liquid-solid interaction is equal to or stronger than that between liquid argon atoms, the bubble nucleation temperature of the confined liquid argon can be higher than the corresponding homogeneous nucleation temperature, because of the more ordered arrangement of atoms within two solid walls nanometers apart. This observation is in contradiction to the common understanding that homogeneous bubble nucleation temperature sets an upper limit for thermal phase change under a given pressure. Compared to the system where the liquid-solid interaction is the same as that between liquid argon atoms, the system with reduced liquid-solid interaction possesses a significantly reduced bubble nucleation temperature, while the system with enhanced liquid-solid interaction only has a marginally increased bubble nucleation temperature.

2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Min Chen ◽  
Juekuan Yang ◽  
Yandong Gao ◽  
Yunfei Chen ◽  
Deyu Li

Thermal bubble nucleation was studied using molecular dynamics for both homogeneous and heterogeneous argon systems using isothermal-isobaric (NPT) and isothermal-isostress (NPzzT) ensembles. Unlike results using NVE and NVT ensembles, no stable nanoscale bubble exists in the NPT ensembles, but instead, the whole system changes into vapor phase. In homogeneous binary systems, reducing the interaction strength between alien atoms and argon atoms significantly decreases the nucleation temperature; however, enhancing the interaction strength only increases the nucleation temperature marginally. For nanoconfined heterogeneous NPzzT ensembles with liquid argon between two solid plates, the nucleation temperature increases as the channel height decreases if the channel height is less than ∼7.63 nm. More interestingly, in this regime, the bubble nucleation temperature could be significantly higher than the corresponding homogeneous nucleation temperature. This observation is different from the common expectation that homogeneous thermal bubble nucleation, as a result of fundamental thermodynamic instability, sets an upper limit for thermal bubble nucleation temperature under a given pressure. However, the result can be understood physically based on the more ordered arrangement of atoms, which corresponds to a higher potential energy barrier.


2003 ◽  
Vol 125 (4) ◽  
pp. 687-692 ◽  
Author(s):  
Jung-Yeop Lee ◽  
Hong-Chul Park ◽  
Jung-Yeul Jung ◽  
Ho-Young Kwak

Nucleation temperatures on micro line heaters were measured precisely by obtaining the I-R (current-resistance) characteristic curves of the heaters. The bubble nucleation temperature on the heater with 3 μm width is higher than the superheat limit, while the temperature on the heater with broader width of 5 μm is considerably less than the superheat limit. The nucleation temperatures were also estimated by using the molecular cluster model for bubble nucleation on the cavity free surface with effect of contact angle. The bubble nucleation process was observed by microscope/35 mm camera unit with a flash light of μs duration.


2021 ◽  
Author(s):  
Kazushi Fujimoto ◽  
Tetsuro Nagai ◽  
Tsuyoshi Yamaguchi

<div>The position-dependent diffusion coefficient along with free energy profile are important parameters needed to study mass transport in heterogeneous systems such as biological and polymer membranes, and molecular dynamics (MD) calculation is a popular tool to obtain them. Among many methodologies, the Marrink-Berendsen (MB) method is often employed to calculate the position-dependent diffusion coefficient, in which the autocorrelation function of the force on a fixed molecule is related to the friction on the molecule. However, the diffusion coefficient is shown to be affected by the period of the removal of the center-of-mass velocity, which is necessary when performing MD calculations using the Ewald method for Coulombic interaction. We have clarified theoretically in this study how this operation affects the diffusion coefficient calculated by the MB method, and the theoretical predictions are proven by MD calculations. Therefore, we succeeded in providing guidance on how to select an appropriate the period of the removal of the center-of-mass velocity in estimating the position-dependent diffusion coefficient by the MB method. This guideline is applicable also to the Woolf-Roux method.</div>


Author(s):  
Masahiko Shibahara ◽  
Kosuke Inoue ◽  
Kiyomori Kobayashi

The classical molecular dynamics simulation was conducted in order to clarify the effects of structural clearances in nanometer scale on thermal resistance at a liquid-solid interface. A liquid molecular region confined between the solid walls, of which the interparticle potential was Lennard-Jones type, was employed as a calculation system. The solid walls consisted of three atomic layers where the temperature of the middle layer was controlled by the Langevin method. Heat flux in the system was calculated numerically by integrating the forces that acted on the temperature controlled atoms by the Langevin method. The temperature jump between the solid wall and the liquid molecular region was calculated numerically. The thermal resistance at a liquid-solid interface was calculated numerically with changing the surface structural clearances in nanometer scale. Temperature gradient and liquid density were also changed as calculation parameters. With changing the surface structural clearances from 0nm to 2.5nm the thermal resistance at the interface once decreased and became the minimum value when the structural clearances were between 0.6 to 1.0 nm. The thermal resistance between the solid and the liquid increased when the structural clearances were more than 1.0nm. With the increase of the liquid density the thermal resistance between the solid and the liquid substantially decreased regardless of the temperature gradient and the surface structures in nanometer scale.


2007 ◽  
Vol 1022 ◽  
Author(s):  
Suranjan Sarkar ◽  
R. Panneer Selvam

AbstractA model nanofluid system of copper nanoparticles in argon base fluid was successfully modeled by molecular dynamics simulation. The interatomic interactions between solid copper nanoparticles, base liquid argon atoms and between solid copper and liquid argon were modeled by Lennard Jones potential with appropriate parameters. The effective thermal conductivity of the nanofluids was calculated through Green Kubo method in equilibrium molecular dynamics simulation for varying nanoparticle concentrations and for varying system temperatures. Thermal conductivity of the basefluid was also calculated for comparison. This study showed that effective thermal conductivity of nanofluids is much higher than that of the base fluid and found to increase with increased nanoparticle concentration and system temperature. Through molecular dynamics calculation of mean square displacements for basefluid, nanofluid and its components, we suggested that the increased movement of liquid atoms in the presence of nanoparticle was probable mechanism for higher thermal conductivity of nanofluids.


2011 ◽  
Vol 284-286 ◽  
pp. 658-661
Author(s):  
Wen Zheng Cui ◽  
Min Li Bai ◽  
Ji Zu Lv ◽  
Xiao Jie Li

This research applied molecular dynamics method to micro Couette flow of nanofluids, in order to examine the absorption layer near solid surfaces, and propose mechanisms of heat transfer enhancement due to flow. The model of nanofluids consisted of 4 nm Cu nanoparticles and liquid argon as base liquid, Lennard-Jones potential function was adopted to deal with the interactions between atoms. Through visual observation and analysis, it was found that the even-distributed liquid argon atoms near solid surfaces could be seemed as a reform to base liquid and had contributed to heat transfer enhancement. In the process of Couette flow, nanoparticles were rotating and vibrating besides moving translationally. The micro-motions of nanoparticles could disturb the continuity of fluid and strengthen partial flow nearby nanoparticles, and enhance heat transfer in nanofluids.


Sign in / Sign up

Export Citation Format

Share Document