Rheological Behavior of Citrus Pulp and its Application to Aseptic Processing

Author(s):  
Manuele Levati

High-density citrus pulp is becoming increasingly popular in the beverage industry; however, its unique rheological behavior poses some challenges for its processing in heat exchangers, including high pressures resulting from its high viscosity and the difficulties producing an even mixture. The rheological behavior of 850 g/l citrus pulp has been studied at different temperatures between 20 °C and 80 °C and applied to computerized fluid dynamics (CFD) simulations of flow in circular pipes and annular heat exchangers in order to determine flow characteristics and solutions for pulp mixing. Paper published with permission.

2021 ◽  
Author(s):  
Ronald E. Vieira ◽  
Thiana A. Sedrez ◽  
Siamack A. Shirazi ◽  
Gabriel Silva

Abstract Air-water two-phase flow in circular pipes has been studied by many investigators. However, investigations of multiphase flow in non-circular pipes are still very rare. Triangular pipes have found a number of applications, such as multiphase flow conditioning, erosion mitigation in elbows, compact heat exchanges, solar heat collectors, and electronic cooling systems. This work presents a survey of air-water and air-water-sand flow through circular and triangular pipes. The main objective of this investigation is to study the potential effects of triangular pipe geometry on flow patterns, slug frequency, sand erosion in elbows, and heat transfer in multiphase flow. Firstly, twenty-three experiments were performed for horizontal air-water flow. Detailed videos and slug frequency measurements were collected through circular and triangular clear pipes to identify flow patterns and create a database for these pipe configurations. The effect of corners of the triangular pipe on the liquid distribution was investigated using two different orientations of triangular pipe: apex upward and downward and results of triangular pipes were compared to round tubes. Secondly, ultrasonic wall thickness erosion measurements, paint removal studies, and CFD simulations were carried out to investigate the erosion patterns and magnitudes for liquid-sand and liquid-gas-sand flows in circular and triangular elbows with the same radius of curvature and cross-sectional area. Thirdly, heat transfer rates for liquid flows were also simulated for both circular and triangular pipe cross-sections. Although similar flow patterns are observed in circular and triangular pipe configurations, the orientation of the triangular pipes seems to have an effect on the liquid distribution and slug frequency. For higher liquid rates, slug frequencies are consistently lower in the triangular pipe as compared to the circular pipe. Similarly, the triangular elbow offers better flow behavior as compared to circular elbows when investigated numerically with similar flow rates for erosion patterns for both liquid-sand flow and liquid-gas-sand flows. Experimental and CFD results show that erosion in the circular elbow is about three times larger than in the triangular elbow. Paint studies results validated erosion patterns and their relations with particle impacts. Finally, heat transfer to/from triangular pipes is shown to be more efficient than in circular pipes, making them attractive for compact heat exchangers and heat collectors. This paper represents a novel experimental work and CFD simulations to examine the effects of pipe geometries on multiphase flow in pipes with several practical applications. The present results will help to determine the efficiency of utilizing triangular pipes as compared to circular pipes for several important applications and field operations such as reducing slug frequencies of multiphase flow in pipes, and reducing solid particle erosion of elbows, and also increasing the efficiency of heat exchangers.


2021 ◽  
Vol 63 (9) ◽  
pp. 1415
Author(s):  
М.Н. Магомедов

Based on the RP-model of a nanocrystal, an analytical method is developed for calculating the specific surface energy (), isochoric and isobaric derivatives of the  function with respect to temperature, and isothermal derivatives of the  function with respect to pressure and density. It is shown that the method is applicable for both macro-and nanocrystals with a given number of atoms and a certain surface shape. To implement this method, the parameters of the Mie–Lennard-Jones paired interatomic potential were determined in a self-consistent way based on the thermoelastic properties of the crystal. The method was tested on macrocrystals of 15 single-component substances: for 8-FCC crystals (Cu, Ag, Au, Al, Ni, Rh, Pd, Pt) and for 7-BCC crystals (Fe, V, Nb, Ta, Cr, Mo, W). The calculations were made at different temperatures and showed good agreement with the experimental data. Using the example of FCC-Rh, the change in surface properties with a decrease of the nanocrystal size along the isotherms of 10, 300, 2000 K is studied. It is shown that at high pressures and low temperatures, there is a region where the  function increases at an isomorphic-isothermal-isobaric decrease in the nanocrystal size. As the temperature increases, this area disappears.


Author(s):  
Konstantin I. Matveev ◽  
Scott Backhaus ◽  
Gregory W. Swift

Thermoacoustic engines and refrigerators use the interaction between heat and sound to produce acoustic energy or to transport thermal energy. Heat leaks in thermal buffer tubes and pulse tubes, components in thermoacoustic devices that separate heat exchangers at different temperatures, reduce the efficiency of these systems. At high acoustic amplitudes, Rayleigh mass streaming can become the dominat means for undesirable heat leak. Gravity affects the streaming flow patterns and influences streaming-induced heat convection. A simplified analytical model is constructed that shows gravity can reduce the streaming heat leak dramatically.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Yazhen Sun ◽  
Zhangyi Gu ◽  
Jinchang Wang ◽  
Chenze Fang ◽  
Xuezhong Yuan

Laboratory investigations of relaxation damage properties of high viscosity asphalt sand (HVAS) by uniaxial compression tests and modified generalized Maxwell model (GMM) to simulate viscoelastic characteristics coupling damage were carried out. A series of uniaxial compression relaxation tests were performed on HVAS specimens at different temperatures, loading rates, and constant levels of input strain. The results of the tests show that the peak point of relaxation modulus is highly influenced by the loading rate in the first half of an L-shaped curve, while the relaxation modulus is almost constant in the second half of the curve. It is suggested that for the HVAS relaxation tests, the temperature should be no less than −15°C. The GMM is used to determine the viscoelastic responses, the Weibull distribution function is used to characterize the damage of the HVAS and its evolution, and the modified GMM is a coupling of the two models. In this paper, the modified GMM is implemented through a secondary development with the USDFLD subroutine to analyze the relaxation damage process and improve the linear viscoelastic model in ABAQUS. Results show that the numerical method of coupling damage provides a better approximation of the test curve over almost the whole range. The results also show that the USDFLD subroutine can effectively predict the relaxation damage process of HVAS and can provide a theoretical support for crack control of asphalt pavements.


2021 ◽  
pp. 3-19
Author(s):  
Dusan P. Sekulic

Abstract Heat exchangers are devices used to transfer thermal energy between two or more fluids, between a solid surface and a fluid, or between a solid particulate and a fluid at different temperatures. This article first addresses the causes of failures in heat exchangers. It then provides a description of heat-transfer surface area, discussing the design of the tubular heat exchanger. Next, the article discusses the processes involved in the examination of failed parts. Finally, it describes the most important types of corrosion, including uniform, galvanic, pitting, stress, and erosion corrosion.


Author(s):  
Prajwal Sapkota ◽  
Laxman Poudel

Bio-gas has been one of the sources of renewable energy and has been used from long time. It is produced by the anaerobic digestion or decomposition of organic compounds and has different process. The digestion process is carried out by bacteria present in the waste and it is highly dependent on the bacteria which work differently on different temperatures. The rate of anaerobic digestion is highest at hemophilic temperature (55°C). Similarly, it is moderate at mesophilic temperature (35°C) and is lowest at psychrophilic (below 20°C). Thus, to attain the highest digestion rate a thermophilic heating system has beend eveloped. The heating system uses five heat exchangers to heat the influent at digester which is of 35m3 volume, to maintain temperature at 56°C. The volume of bio-gas production from this system which uses cow dung as digestingmaterial is about 28 m3 per day.


2015 ◽  
Vol 14 (2) ◽  
pp. 31 ◽  
Author(s):  
L. E. Silva ◽  
C. A. C. Santos ◽  
J. E. S. Ribeiro ◽  
C. C. Souza ◽  
A. M. S. Sant’Ana

Rheology attempts to define a relationship between the stress acting on a given material and the resulting deformation and/or flow that takes place. Thus, the knowledge of rheological properties of fluid materials such as vegetable oils generates auxiliary data that can be used in its storage and application. In this context, the aim of this study was to evaluate the rheological behavior of vegetable oils (cotton, canola, sunflower, corn and soybean) at different temperatures, using four rheological models (Ostwald- de-Waelle, Herschel-Bulkley, Newton and Bingham). The rheological properties were determined using a Thermo Haake rheometer with concentric cylinder geometry. Measurements were taken at 30, 45 and 60 °C by controlling the temperature using a thermostatic bath coupled to the equipment. The software Rheowin Pro Job Manager was used for process control and data record. The rheograms were obtained by measuring the values of shear stress varying the shear rate from 100 to 600 s-1 within 250 seconds. For the analysis of the apparent viscosity at different shear rates was applied simple linear regression until 2nd degree with the aid of SAS (SAS/Stat 9.2) program. The apparent viscosity data were submitted to analysis of variance and the averages were compared by Tukey test at 5% of probability. Higher temperatures of the samples were correlated to lower shear stress values, hence lower values for viscosity and consistency index were obtained, since it is known that the density and viscosity are highly sensitive to temperature and that the increase in temperature results in reduction of viscosity, benefiting the fluid flow. The models of Newton and Ostwald-de-Waelle were chosen to evaluate the rheological behavior of the samples, showing a good fit for the rheological data.


2014 ◽  
Vol 587-589 ◽  
pp. 1281-1285
Author(s):  
Xu Dong Li

Research shows that rheological property of asphalt relates directly to pavement property. To get a grip on the influence of different factors on rheological property of high modulus asphalt, this paper makes a systematic study of different temperatures, loading frequency, strain 70# base asphalt and rheological property of high modulus asphalt by the method of DSR measurement, and compared their anti-fatigue performance. The experiment’s results shows that high-modules asphalt has a low sensitivity of temperature. Compare with the base asphalt, the high-modules modified asphalt’s G*/sinδ will have a slower decrease rapid under the condition of temperature increase. Both asphalt’s G*/sinδ would decrease with the decrease of load frequency, high-modules asphalt has a higher G*/sinδ than base asphalt especially at the high temperature and low frequency.


Sign in / Sign up

Export Citation Format

Share Document