Natural Frequencies of Parallelogrammic Plates Using Characteristic Orthogonal Polynomials in Rayleigh-Ritz Method

Author(s):  
L. T. Lee ◽  
W. F. Pon

Abstract Natural frequencies of parallelogrammic plates are obtained by employing a set of beam characteristic orthogonal polynomials in the Rayleigh-Ritz method. The orthogonal polynomials are generalted by using a Gram-Schmidt process, after the first member is constructed so as to satisfy all the boundary conditions of the corresponding beam problems accompanying the plate problems. The strain energy functional and kinetic energy functionals are transformed from Cartesian coordinate system to a skew coordinate system. The natural frequencies obtained by using the orthogonal polynomial functions are compared with those obtained by other methods with all four edges clamped boundary conditions and greet agreements are found between them. The natural frequencies for parallelogrammic plates with other boundary conditions, such as four edges simply supported, clamped-free and simply supported-free, are also obtained. This method is considered as a better and accurate comprehensive treatment for this type of problems.

Author(s):  
C. Rajalingham ◽  
R. B. Bhat ◽  
G. D. Xistris

Abstract The natural frequencies and natural modes of vibration of uniform elliptic plates with clamped, simply supported and free boundaries are investigated using Rayleigh-Ritz method. A modified polar coordinate system is used to investigate the problem. Energy expressions in Cartesian coordinate system are transformed into the modified polar coordinate system. Boundary characteristic orthogonal polynomials in the radial direction, and trigonometric functions in the angular direction are used to express the deflection of the plate. These deflection shapes are classified into four basic categories, depending on its symmetrical or antisymmetrical property about the major and minor axes of the ellipse. The first six natural modes in each of the above categories are presented in the form of contour plots.


1993 ◽  
Vol 115 (3) ◽  
pp. 353-358 ◽  
Author(s):  
C. Rajalingham ◽  
R. B. Bhat ◽  
G. D. Xistris

The natural frequencies and natural modes of vibration of uniform elliptic plates with clamped, simply supported and free boundaries are investigated using the Rayleigh-Ritz method. A modified polar coordinate system is used to investigate the problem. Energy expressions in the Cartesian coordinate system are transformed into the modified polar coordinate system. Boundary characteristic orthogonal polynomials in the radial direction, and trigonometric functions in the angular direction are used to express the deflection of the plate. These deflection shapes are classified into four basic categories, depending on their symmetrical or antisymmetrical properties about the major and minor axes of the ellipse. The first six natural modes in each of the above categories are presented in the form of contour plots.


2014 ◽  
Vol 21 (4) ◽  
pp. 571-587 ◽  
Author(s):  
Hamid Reza Saeidi Marzangoo ◽  
Mostafa Jalal

AbstractFree vibration analysis of functionally graded (FG) curved panels integrated with piezoelectric layers under various boundary conditions is studied. A panel with two opposite edges is simply supported, and arbitrary boundary conditions at the other edges are considered. Two different models of material property variations based on the power law distribution in terms of the volume fractions of the constituents and the exponential law distribution of the material properties through the thickness are considered. Based on the three-dimensional theory of elasticity, an approach combining the state space method and the differential quadrature method (DQM) is used. For the simply supported boundary conditions, closed-form solution is given by making use of the Fourier series expansion, and applying the differential quadrature method to the state space formulations along the axial direction, new state equations about state variables at discrete points are obtained for the other cases such as clamped or free-end conditions. Natural frequencies of the hybrid curved panels are presented by solving the eigenfrequency equation, which can be obtained by using edges boundary conditions in this state equation. The results obtained for only FGM shell is verified by comparing the natural frequencies with the results obtained in the literature.


1996 ◽  
Vol 63 (1) ◽  
pp. 110-115 ◽  
Author(s):  
Moon K. Kwak

This paper is concerned with the virtual mass effect on the natural frequencies and mode shapes of rectangular plates due to the presence of the water on one side of the plate. The approximate formula, which mainly depends on the so-called nondimensionalized added virtual mass incremental factor, can be used to estimate natural frequencies in water from natural frequencies in vacuo. However, the approximate formula is valid only when the wet mode shapes are almost the same as the one in vacuo. Moreover, the nondimensionalized added virtual mass incremental factor is in general a function of geometry, material properties of the plate and mostly boundary conditions of the plate and water domain. In this paper, the added virtual mass incremental factors for rectangular plates are obtained using the Rayleigh-Ritz method combined with the Green function method. Two cases of interfacing boundary conditions, which are free-surface and rigid-wall conditions, and two cases of plate boundary conditions, simply supported and clamped cases, are considered in this paper. It is found that the theoretical results match the experimental results. To investigate the validity of the approximate formula, the exact natural frequencies and mode shapes in water are calculated by means of the virtual added mass matrix. It is found that the approximate formula predicts lower natural frequencies in water with a very good accuracy.


2011 ◽  
Vol 18 (4) ◽  
pp. 627-640 ◽  
Author(s):  
S. Bashmal ◽  
R. Bhat ◽  
S. Rakheja

In-plane free vibrations of an elastic and isotropic annular disk with elastic constraints at the inner and outer boundaries, which are applied either along the entire periphery of the disk or at a point are investigated. The boundary characteristic orthogonal polynomials are employed in the Rayleigh-Ritz method to obtain the frequency parameters and the associated mode shapes. Boundary characteristic orthogonal polynomials are generated for the free boundary conditions of the disk while artificial springs are used to account for different boundary conditions. The frequency parameters for different boundary conditions of the outer edge are evaluated and compared with those available in the published studies and computed from a finite element model. The computed mode shapes are presented for a disk clamped at the inner edge and point supported at the outer edge to illustrate the free in-plane vibration behavior of the disk. Results show that addition of point clamped support causes some of the higher modes to split into two different frequencies with different mode shapes.


2001 ◽  
Vol 01 (01) ◽  
pp. 125-144 ◽  
Author(s):  
HUAN ZENG ◽  
CHARLES W. BERT

Stiffened skew plates find application in various engineering fields. The free vibration characteristics of such plates have been studied by various methods. An orthogonally stiffened skew plate is a skew plate with stiffeners running orthogonal to two opposite edges. To the best knowledge of the present investigators, no previous work has been done for free vibration characteristics of skew plates of such stiffening geometry. The present work studies the free vibration of such plates. The pb-2 Rayleigh–Ritz method was employed due to its accuracy and computational efficiency. The conventional finite element method was also used as a comparative check. A convergence study was first performed for various boundary conditions. Then the vibration of orthogonally stiffened skew plates with different boundary conditions was studied. Close agreement was found between these two methods. The variations of natural frequencies with different parameters, including skew angle ϕ, edge ratio b/a, and height-thickness ratio f/h, were investigated for three types of boundary conditions.


2002 ◽  
Vol 02 (02) ◽  
pp. 151-161 ◽  
Author(s):  
C. M. WANG ◽  
Y. XIANG ◽  
C. Y. WANG

This paper is concerned with the elastic buckling problem of vertical plates under body forces/selfweight. The vertical plate is either clamped or simply supported at its bottom edge while its top edge is free. The two sides of the plate may either be free, simply supported or clamped. For plates with simply supported sides, exact critical buckling solutions are derived using the Levy approach. For other boundary conditions, accurate buckling solutions are obtained for very wide plates to very tall plates using the Ritz method.


Author(s):  
Kyeong-Hoon Jeong ◽  
Jin-Seok Park ◽  
Won-Jae Lee

This paper presents a theoretical analysis for the hydroelastic vibration of a rectangular tank partially filled with an ideal liquid. The wet dynamic displacement of the tank is approximated by combining the orthogonal polynomials satisfying the simply supported boundary conditions, since the rectangular tank is composed of four rectangular plates. As the facing rectangular plates are geometrically identical, the vibration modes of the facing plates can be divided into two categories: symmetric modes and asymmetric modes with respect to the vertical centerlines of the plates. The liquid displacement potential satisfying the boundary conditions is derived and the wet dynamic modal functions of the four plates are expanded by the finite Fourier transformation for a compatibility requirement along the contacting surface between the tank and the liquid. The natural frequencies of the rectangular tank in the wet condition are calculated by using the Rayleigh-Ritz method. The proposed analytical method is verified by observing an excellent agreement with three-dimensional finite element analysis results.


2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Seyyed Amirhosein Hosseini1 ◽  
O. Rahmani2

The size effect on the free vibration and bending of a curved FG micro/nanobeam is studied in this paper. Using the Hamilton principle the differential equations and boundary conditions is derived for a nonlocal Euler-Bernoulli curved micro/nanobeam.  The material properties vary through radius direction. Using the Navier approach an analytical solution for simply supported boundary conditions is obtained where the power index law of FGM, the curved micro/nanobeam opening angle, the effect of aspect ratio and nonlocal parameter on natural frequencies and the radial and tangential displacements were analyzed. It is concluded that increasing the curved micro/nanobeam opening angle results in decreasing and increasing the frequencies and displacements, respectively. To validate the natural frequencies of curved nanobeam, when the radius of it approaches to infinity, is compared with a straight FG nanobeam and showed a good agreement.


Author(s):  
Muzamal Hussain ◽  
Muhammad Nawaz Naeem ◽  
Mohammad Reza Isvandzibaei

In this paper, vibration characteristics of rotating functionally graded cylindrical shell resting on Winkler and Pasternak elastic foundations have been investigated. These shells are fabricated from functionally graded materials. Shell dynamical equations are derived by using the Hamilton variational principle and the Langrangian functional framed from the shell strain and kinetic energy expressions. Elastic foundations, namely Winkler and Pasternak moduli are inducted in the tangential direction of the shell. The rotational motions of the shells are due to the Coriolis and centrifugal acceleration as well as the hoop tension produced in the rotating case. The wave propagation approach in standard eigenvalue form has been employed in order to derive the characteristic frequency equation describing the natural frequencies of vibration in rotating functionally graded cylindrical shell. The complex exponential functions, with the axial modal numbers that depend on the boundary conditions stated at edges of a cylindrical shell, have been used to compute the axial modal dependence. In our new investigation, frequency spectra are obtained for circumferential wave number, length-to-radius ratio, height-to-radius ratio with simply supported–simply supported and clamped–clamped boundary conditions without elastic foundation. Also, the effect of elastic foundation on the rotating cylindrical shells is examined with the simply supported–simply supported edge. To check the validity of the present method, the fundamental natural frequencies of non-rotating isotropic and functionally graded cylindrical shells are compared with the open literature. Also, a comparison is made for infinitely long rotating with the earlier published paper.


Sign in / Sign up

Export Citation Format

Share Document