scholarly journals Axisymmetric Free Vibration of Thick Orthotropic Hemispherical Shells Under Various Edge Conditions

Author(s):  
C. C. Chao ◽  
T. P. Tung ◽  
Y. C. Chern

Abstract Axisymmetric free vibration of moderately thick polar orthotropic hemispherical shells are studied under the various boundary conditions of sliding, guided pin, clamped and hinged edges. Based on the improved linear elastic shell theory with the transverse shear strain and rotatory inertia taken into account, the dynamic equilibrium equations are formulated and transformed into the displacement form in terms of mid-surface meridian and radial displacements and parallel circle cross-section rotation. These partial differential equations are solved by the Galerkin method using proper Legendre polynomials as admissible displacement functions with the aid of the orthogonality and a number of special integral relations. Numerical results of the present theory compare well with existing data, which is available only in the isotropic theories. Good convergence is obtained for natural frequencies and mode shapes. Study of the effects of thickness and modulus ratio reveals higher frequencies for the thicker and/or stiffer shells with E\ oriented parallel to the meridians. Ranking of the natural frequencies descends in the order of guided pins, sliding, clamped and hinged edges in general. Also seen are the effects of transverse shear strain from the mode shapes with clamped and sliding edges on the slant. For the guided pin and sliding edges, frequencies increase fast as thickness increases so that new fundamental modes are generated in filling up the “frequency gap”. These are the new discoveries in the field of anisotropic shells, as a result of polar orthotropy of shell material and construction.

2019 ◽  
Vol 19 (08) ◽  
pp. 1950084 ◽  
Author(s):  
Joon Kyu Lee ◽  
Byoung Koo Lee

This study focused on the in-plane free vibration of uniform circular arches made of axially functionally graded (AFG) materials. Based on the dynamic equilibrium of an arch element, the governing equations for the free vibration of an AFG arch are derived in this study, where arbitrary functions for the Young’s modulus and mass density are acceptable. For the purpose of numerical analysis, quadratic polynomials for the Young’s modulus and mass density are considered. To calculate the natural frequencies and corresponding mode shapes, the governing equations are solved using the direct integral method enhanced by the trial eigenvalue method. For verification purposes, the predicted frequencies are compared to those obtained by the general purpose software ADINA. A parametric study of the end constraint, rotatory inertia, modular ratio, radius parameter, and subtended angle for the natural frequencies is conducted and the corresponding mode shapes are reported.


2012 ◽  
Vol 19 (4) ◽  
pp. 679-692 ◽  
Author(s):  
Sudip Dey ◽  
Amit Karmakar

Location of delamination is a triggering parameter for structural instability of laminated composites. In this paper, a finite element method is employed to determine the effects of location of delamination on free vibration characteristics of graphite-epoxy cross-ply composite pre-twisted shallow conical shells. The generalized dynamic equilibrium equation is derived from Lagrange's equation of motion neglecting Coriolis effect for moderate rotational speeds. The formulation is exercised by using an eight noded isoparametric plate bending element based on Mindlin's theory. Multi-point constraint algorithm is utilized to ensure the compatibility of deformation and equilibrium of resultant forces and moments at the delamination crack front. The standard eigen value problem is solved by applying the QR iteration algorithm. Finite element codes are developed to obtain the numerical results concerning the effects of location of delamination, twist angle and rotational speed on the natural frequencies of cross-ply composite shallow conical shells. The mode shapes are also depicted for a typical laminate configuration. Numerical results obtained from parametric studies of both symmetric and anti-symmetric cross-ply laminates are the first known non-dimensional natural frequencies for the type of analyses carried out here.


1995 ◽  
Vol 1 (1) ◽  
pp. 15-39 ◽  
Author(s):  
K.M. Liew ◽  
C.W. Lim

This article presents the vibration analysis of thick doubly curved shallow shells having curvilinear planform. The Gaussian curvature of shell varies from positive (such as spherical) to negative (such as hyperbolic paraboloidal). The boundaries are constrained with either soft-simply supported or fully clamped edges. A higher-order shear deformation theory, which includes transverse shear strain and rotary inertia, is developed to model the vibration characteristics of the shell. The inclusion of Lamé parameters in the present formulation accounts for the presence of shell curvature and yields cubic transverse shear strain distribution in contrast with the existing quadratic expressions. A set of versatile, globally continuous shape functions is adopted in the Ritz numerical procedure to approximate the displacement and rotation fields. A set of new results for a wide range of shell configurations is presented with some selected contour and three-dimensional displacement mode shapes.


1991 ◽  
Vol 113 (2) ◽  
pp. 152-159 ◽  
Author(s):  
C. C. Chao ◽  
T. P. Tung ◽  
Y. C. Chern

Axisymmetric free vibration of moderately thick polar orthotropic hemispherical shells are studied under the various boundary conditions with sliding, guided pin, clamped, and hinged edges. Based on the improved linear elastic shell theory with the transverse shear strain and rotatory inertia taken into account, the dynamic equlibrium equations are formulated and transformed into the displacement form in terms of mid-surface meridian and radial displacements and parallel circle cross-section rotation. These partial differential equations are solved by the Galerkin method using proper Legendre polynomials as admissible displacement functions with the aid of the orthogonality and a number of special integral relations. Natural frequencies and modes found from the eigenproblems are shown with reasonable results.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (04) ◽  
pp. 231-240
Author(s):  
Douglas Coffin ◽  
Joel Panek

A transverse shear strain was utilized to characterize the severity of creasing for a wide range of tooling configurations. An analytic expression of transverse shear strain, which accounts for tooling geometry, correlated well with relative crease strength and springback as determined from 90° fold tests. The experimental results show a minimum strain (elastic limit) that needs to be exceeded for the relative crease strength to be reduced. The theory predicts a maximum achievable transverse shear strain, which is further limited if the tooling clearance is negative. The elastic limit and maximum strain thus describe the range of interest for effective creasing. In this range, cross direction (CD)-creased samples were more sensitive to creasing than machine direction (MD)-creased samples, but the differences were reduced as the shear strain approached the maximum. The presented development provides the foundation for a quantitative engineering approach to creasing and folding operations.


2020 ◽  
Vol 27 (1) ◽  
pp. 216-225
Author(s):  
Buntheng Chhorn ◽  
WooYoung Jung

AbstractRecently, basalt fiber reinforced polymer (BFRP) is acknowledged as an outstanding material for the strengthening of existing concrete structure, especially it was being used in marine vehicles, aerospace, automotive and nuclear engineering. Most of the structures were subjected to severe dynamic loading during their service life that may induce vibration of the structures. However, free vibration studied on the basalt laminates composite plates with elliptical cut-out and correlation of natural frequency with buckling load has been very limited. Therefore, effects of the elliptical hole on the natural frequency of basalt/epoxy composite plates was performed in this study. Effects of stacking sequence (θ), elliptical hole inclination (ϕ), hole geometric ratio (a/b) and position of the elliptical hole were considered. The numerical modeling of free vibration analysis was based on the mechanical properties of BFRP obtained from the experiment. The natural frequencies as well as mode shapes of basalt laminates composite plates were numerically determined using the commercial program software (ABAQUS). Then, the determination of correlation of natural frequencies with buckling load was carried out. Results showed that elliptical hole inclination and fiber orientation angle induced the inverse proportion between natural frequency and buckling load.


2011 ◽  
Vol 675-677 ◽  
pp. 477-480
Author(s):  
Dong Wei Shu

In this work analytical solutions are developed to study the free vibration of composite beams under axial loading. The beam with a single delamination is modeled as four interconnected Euler-Bernoulli beams using the delamination as their boundary. The continuity and the equilibrium conditions are satisfied between the adjoining beams. The studies show that the sizes and the locations of the delaminations significantly influence the natural frequencies and mode shapes of the beam. A monotonic relation between the natural frequency and the axial load is predicted.


2017 ◽  
Vol 24 (19) ◽  
pp. 4465-4483 ◽  
Author(s):  
Mohsen Amjadian ◽  
Anil K Agrawal

Horizontally curved bridges have complicated dynamic characteristics because of their irregular geometry and nonuniform mass and stiffness distributions. This paper aims to develop a simplified and practical method for the calculation of the natural frequencies and mode shapes of horizontally curved bridges that would be of interest to bridge engineers for the estimation of the seismic response of these types of bridges. For this purpose, a simple three-degree-of-freedom (3DOF) dynamic model for free vibration equation of this type of bridge has been developed. It is shown that the translational motion of the deck of horizontally curved bridges in the direction that is perpendicular to their axis of symmetry is always coupled with the rotational motion of the deck, regardless of the location of the stiffness center. The model is further exploited to develop closed-form formulas for the estimation of the maximum displacements of the corners of the deck of one-way asymmetric horizontally curved bridges. The accuracy of the model is verified by finite-element model of a horizontally curved bridge prototype in OpenSEES. Finally, the model is utilized to study the influence of the location of the stiffness center with respect to the deck curvature center on the natural frequency and the maximum displacements of the corners of the deck for different curvatures of the deck. The results of free vibration analysis show that the natural frequencies of one-way asymmetric horizontally curved bridges, in general, increase with the increase of the subtended angle of the deck. The results of earthquake response spectrum analysis show that the increase in the subtended angle of one-way asymmetric horizontally curved bridges decreases the radial displacements of the corners of the deck but increases the azimuthal displacement. These two responses both increase with the increase in the distance between the stiffness center and the curvature center.


Sign in / Sign up

Export Citation Format

Share Document