Geometric Modeling and Collaborative Design in a Multi-Modal Multi-Sensory Virtual Environment

Author(s):  
Rajarathinam Arangarasan ◽  
Rajit Gadh

Abstract Shape modeling plays a vital role in the design process but often it is the most tedious task in the whole design cycle. In recent years the Computer Aided Design (CAD) industry has evolved through a number of advances and developments in design methodology. However, modeling in these CAD systems requires expertise and in-depth understanding of the modeling process, user interface and the CAD system itself, resulting in increased design cycle time. To overcome these problems a new methodology and a system called “Detailed Virtual Design System” (DVDS) has been developed for detailed shape modeling in a multi-modal, multi-sensory Virtual Environment (VE). This system provides an intuitive and natural way of designing using hand motions, gestures and voice commands. Due to the lack of effective collaborative design, visualization and analysis tools, designers spend a considerable amount of time and effort in the group discussion during design process. To enable multiple designers to effectively and efficiently collaborate in a design environment, framework of a collaborative virtual environment, called “Virtual Environment to Virtual Environment” (V2V), has been discussed. This framework allows same site and remote site multi-modal, multi-sensory immersive interface between designers.

Author(s):  
David J. French ◽  
Brett Stone ◽  
Thomas T. Nysetvold ◽  
Ammon Hepworth ◽  
W. Edward Red

Real-time simultaneous multi-user (RSM) computer-aided design (CAD) is currently a major area of research and industry interest due to its potential to reduce design lead times and improve design quality through enhanced collaboration. Minecraft, a popular multi-player online game in which players use blocks to design structures, is of academic interest as a natural experiment in collaborative 3D design of very complex structures. Virtual teams of up to forty simultaneous designers have created city-scale models with total design times in the thousands of hours. Using observation and a survey of Minecraft users, we offer insights into how virtual design teams might effectively build, communicate, and manage projects in an RSM CAD design environment. The results suggest that RSM CAD will be useful and practical in an engineering setting with several simultaneous contributors. We also discuss the potential effects of RSM CAD on team organization, planning, design concurrency, communication, and mentoring.


Author(s):  
Zhiqiang Chen ◽  
Zahed Siddique

Today’s design environment has become more distributed and professional. Efficient design management can greatly improve the ability of a company’s competition. To increase efficiency of a design process coordination of Computer-Aided Design and Analysis tools are very important, especially for large complicated systems. In this paper, we introduce the concept of a requirement driven system. Design process usually involves fulfillment of requirements from top-end customer. Adopting requirement driven mechanisms will provide more convenience for design coordination automation and help us find the most resource saving solutions for specific product design. A CORBA framework is discussed to facilitate the implementation of methodologies for requirement driven design coordination. System architecture and modules for the framework are introduced to support a requirement publishing and responding service. Distribution of the tasks is determined by “stigmergy” algorithm, which makes the decision using the performance history of each team and designers. An example of a coffeemaker product design based on the framework, is presented to demonstrate the application of new design system.


Author(s):  
David J. French ◽  
Brett Stone ◽  
Thomas T. Nysetvold ◽  
Ammon Hepworth ◽  
W. Edward Red

Synchronous collaborative (“multi-user”) computer-aided design (CAD) is a current topic of academic and industry interest due to its potential to reduce design lead times and improve design quality through enhanced collaboration. Minecraft, a popular multiplayer online game in which players can use blocks to design structures, is of academic interest as a natural experiment in a collaborative 3D design of very complex structures. Virtual teams of up to 40 simultaneous designers have created city-scale models with total design times in the thousands of hours. Using observation and a survey of Minecraft users, we offer insights into how virtual design teams might effectively build, communicate, and manage projects in a multi-user CAD design environment. The results suggest that multi-user CAD will be useful and practical in an engineering setting with several simultaneous contributors. We also discuss the effects of multi-user CAD on team organization, planning, design concurrency, communication, and mentoring.


Author(s):  
Ian Yellowley ◽  
Paul Winkelman

Engineers frequently refer to catalogues when designing products and by carefully selecting standard components, they are able to create their own unique systems. Unfortunately, these catalogues tend to serve a limited audience as they favour experienced designers. This research is aimed at developing a software framework that renders catalogue data more accessible to novice designers. The system envisaged is composed of a highly object oriented virtual design environment that allows engineers to develop their products at the conceptual level and then draw on catalogue data as they enter the embodiment and specification phase of the design process. In addition to catalogue data, this design environment must integrate other design aids, such as graphics, simulation and analysis programs. Ultimately, the virtual environment should allow novice designers to develop systems that rival those of experienced engineers using traditional catalogues.


2013 ◽  
Vol 712-715 ◽  
pp. 2888-2893
Author(s):  
Hai Qiang Liu ◽  
Ming Lv

In order to realize information sharing and interchange of complex product multidisciplinary collaborative design (MCD) design process and resources. The Process integrated system control of product multidisciplinary collaborative design was analyzed firstly in this paper, then design process of complex product for supporting multidisciplinary collaborative was introduced, a detailed description is given of the organization structure and modeling process of MCD-oriented Integration of Product Design Meta-model ; and concrete implement process of process integrated system control method was introduced to effectively realize information sharing and interchange between product design process and resources.


Author(s):  
Tushar H. Dani ◽  
Rajit Gadh

Abstract Despite advances in Computer-Aided Design (CAD) and the evolution of the graphical user interfaces, rapid creation, editing and visualization of three-dimensional (3D) shapes remains a tedious task. Though the availability of Virtual Reality (VR)-based systems allows enhanced three-dimensional interaction and visualization, the use of VR for ab initio shape design, as opposed to ‘importing’ models from existing CAD systems, is a relatively new area of research. Of interest are computer-human interaction issues and the design and geometric tools for shape modeling in a Virtual Environment (VE). The focus of this paper is on the latter i.e. in defining the geometric tools required for a VR-CAD system and in describing a framework that meets those requirements. This framework, the Virtual Design Software Framework (VDSF) consists of the interaction and design tools, and an underlying geometric engine that provides the representation and algorithms required by these tools. The geometric engine called the Virtual Modeler uses a graph-based representation (Shape-Graph) for modeling the shapes created by the user. The Shape-Graph facilitates interactive editing by localizing the effect of editing operations and in addition provides constraint-based design and editing mechanisms that are useful in a 3D interactive virtual environment. The paper concludes with a description of the prototype system, called the Virtual Design Studio (VDS), that is currently being implemented.1.


Author(s):  
Tushar H. Dani ◽  
Chi-Cheng P. Chu ◽  
Rajit Gadh

Abstract Rapid shape creation and visualization of solid models remains a tedious task despite advances in the field of Computer Aided Design (CAD)/Solid Modeling. CAD systems require a significant level of detail, such as vertices, edges, and faces to be specified by the user, even before the simplest of shapes can be created and viewed. In addition, most CAD systems have an essentially 2D interface for designing artifacts. This makes artifact visualization, for example by interactive rotation, difficult since all manipulations have be achieved by 2D translation of the mouse or by typing in the required angles of rotation. The limited visualization capability and the requirement to create shapes through the specification of low level entities is especially cumbersome in the concept shape design stage. This paper describes the Conceptual Virtual Design System, COVIRDS, a tool for product concept design. COVIRDS provides an intuitive voice and hand input-based interface for modeling of products using a ‘construction’ approach. Product shape models are created by ‘attaching’ simpler parametrically defined ‘Shape Elements’ to other elements to create more complex models. Voice commands are used to instantiate shape elements and change their parameters, for example, the width, length and height of a block element. 3D hand input is used for positioning shape elements during element attachment. The voice and hand input-based interface together with a stereoscopic visual display facilitates rapid creation and visualization of concept shape models.


Author(s):  
Tushar H. Dani ◽  
Rajit Gadh

Abstract This paper describes the development of a computer system architecture for mechanical conceptual shape design within a virtual environment — COVIRDS1 (COnceptual VIRtual Design System).


2011 ◽  
Vol 148-149 ◽  
pp. 1394-1398
Author(s):  
Wei Liang Cai ◽  
Yan Chen ◽  
Meng Si Zhu ◽  
Xiang Jun Zou ◽  
Jing Li ◽  
...  

To study the characteristic fruit manipulator in southern China, architecture of fruit manipulator virtual design system was build by the use of modular technology. Parameterize the feature properties of picking manipulator, so the reusable parametric model was build. Based on the database technology, the knowledge base was build, including examples base, constraint rules and research status. Moreover, visualization 3D simulation of the processing of picking was realized under the virtual environment. Finally, through the development of experimental prototype, the virtual design system and its key technologies can be verified.


Author(s):  
Zhiqiang Chen ◽  
Zahed Siddique

The emergence of computer and network technology has provided opportunities for researchers to construct and build systems to support dynamic, real-time, and collaborative engineering design in a concurrent manner. This paper provides an understanding of the product design in a distributed environment where designers are in different geographic locations and are required to be involved in the design process to ensure successful product design. A design process model that captures the major interactions among stakeholders is presented, based on the observation of cooperation and collaboration. The stakeholders’ interactions are divided into activity and system level to distinguish the interactions in group design activities and design perspective evolution. An initial computer implementation of the design model is presented. The design system consists of a set of tools associated with design and a management system to facilitate distributed designers to support various design activities, especially conceptual design. Our research emphasis of design collaboration in this paper is: (i) Model a Cooperative-collaborative design process; (ii) Support synchronized design activities; and (iii) Structure the complex relations of various design perspectives from engineering disciplines.


Sign in / Sign up

Export Citation Format

Share Document