Tolerance Optimization: A Decomposition Scheme, Variance Reduction and Fractional Approximation

Author(s):  
Mohamed H. Gadallah

Abstract Development of involved optimization algorithms is not an easy task for several reasons: First, every analyst is interested in a specific problem; Second, the capabilities of these methods may not be fully understood a priori; Third, coding of multi-purpose and more involved algorithms is not an easy job. In this paper, the optimization problem employing the near to global optimum algorithm is studied (Gadallah, M.H., 2000). The focus is to exploit 2 ideas: First, the algorithm can be modified to act as a variance reduction technique; Second, the algorithm can be modified to tackle the problem of system decomposition. Both ideas are novel within the context of statistical design of experiments. The first, if fully proved experimentally could yield the simultaneous integration of nominal and variance optimization possible. The second, can be extended to deal with multi-dimensional highly constrained systems with ease. These two ideas are explained wife the use of a simple example to illustrate the idea. An algorithm is developed that deal with the problem in several stages according to a predetermined decomposition scheme. The original objective and constraint functions are dealt with to suit each stage. Accordingly, all NP hard problems can ideally be transformed into NP complete ones with a consequence on the number of stages resulting from decomposition. Several decomposition scenarios are used and their results are compared numerically. Two orthogonal arrays and four composite arrays are used to plan experimentation; these are L27OA and L54OA and their subfamilies. These arrays are compared with respect to their statistical measures. The algorithm as such, is very promising optimization tool, especially for coupling system decomposition and variance reduction. Past work focused on either decomposition or statistical optimization. This work offers both capabilities. Several studies are reviewed and conclusions are drawn.

2000 ◽  
Author(s):  
Dongzhe Yang ◽  
Kourosh Danai ◽  
David Kazmer

Abstract Complexity of manufacturing processes has hindered methodical specification of machine setpoints for improving productivity. Traditionally in injection molding, the machine setpoints are assigned either by trial and error, based on heuristic knowledge of an experienced operator, or according to an empirical model between the inputs and part quality attributes obtained from statistical design of experiments (DOE). In this paper, a Knowledge-Based Tuning (KBT) Method is presented which takes advantage of the a priori knowledge of the process, in the form of a qualitative model, to reduce the demand for experimentation. The KBT Method is designed to provide an estimate of the process feasible region (process window) as the basis of finding the optimal setpoints, and to update its knowledge-base according to new input-output data that becomes available during tuning. The KBT Method’s utility is demonstrated in production of digital video disks (DVDs).


2013 ◽  
Vol 12 (3) ◽  
pp. 465-474 ◽  
Author(s):  
Saroj Sundar Baral ◽  
Ganesan Surendran ◽  
Namrata Das ◽  
Polisetty Venkateswara Rao

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1246
Author(s):  
Steffen Ulitzsch ◽  
Tim Bäuerle ◽  
Mona Stefanakis ◽  
Marc Brecht ◽  
Thomas Chassé ◽  
...  

We present the modification of ethylene-propylene rubber (EPM) with vinyltetra-methydisiloxane (VTMDS) via reactive extrusion to create a new silicone-based material with the potential for high-performance applications in the automotive, industrial and biomedical sectors. The radical-initiated modification is achieved with a peroxide catalyst starting the grafting reaction. The preparation process of the VTMDS-grafted EPM was systematically investigated using process analytical technology (in-line Raman spectroscopy) and the statistical design of experiments (DoE). By applying an orthogonal factorial array based on a face-centered central composite experimental design, the identification, quantification and mathematical modeling of the effects of the process factors on the grafting result were undertaken. Based on response surface models, process windows were defined that yield high grafting degrees and good grafting efficiency in terms of grafting agent utilization. To control the grafting process in terms of grafting degree and grafting efficiency, the chemical changes taking place during the modification procedure in the extruder were observed in real-time using a spectroscopic in-line Raman probe which was directly inserted into the extruder. Successful grafting of the EPM was validated in the final product by 1H-NMR and FTIR spectroscopy.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1783
Author(s):  
Hamza A. Al-Tameemi ◽  
Thamir Al-Dulaimi ◽  
Michael Oluwatobiloba Awe ◽  
Shubham Sharma ◽  
Danil Yurievich Pimenov ◽  
...  

Aluminum alloys are soft and have low melting temperatures; therefore, machining them often results in cut material fusing to the cutting tool due to heat and friction, and thus lowering the hole quality. A good practice is to use coated cutting tools to overcome such issues and maintain good hole quality. Therefore, the current study investigates the effect of cutting parameters (spindle speed and feed rate) and three types of cutting-tool coating (TiN/TiAlN, TiAlN, and TiN) on the surface finish, form, and dimensional tolerances of holes drilled in Al6061-T651 alloy. The study employed statistical design of experiments and ANOVA (analysis of variance) to evaluate the contribution of each of the input parameters on the measured hole-quality outputs (surface-roughness metrics Ra and Rz, hole size, circularity, perpendicularity, and cylindricity). The highest surface roughness occurred when using TiN-coated tools. All holes in this study were oversized regardless of the tool coating or cutting parameters used. TiN tools, which have a lower coating hardness, gave lower hole circularity at the entry and higher cylindricity, while TiN/TiAlN and TiAlN seemed to be more effective in reducing hole particularity when drilling at higher spindle speeds. Finally, optical microscopes revealed that a built-up edge and adhesions were most likely to form on TiN-coated tools due to TiN’s chemical affinity and low oxidation temperature compared to the TiN/TiAlN and TiAlN coatings.


2021 ◽  
Vol 23 ◽  
pp. 100978
Author(s):  
L. Rodríguez-Sáez ◽  
J. Landaburu-Aguirre ◽  
S. Molina ◽  
M.C. García-Payo ◽  
E. García-Calvo

2021 ◽  
Vol 58 (1) ◽  
pp. 51-58
Author(s):  
Rawya Gamal ◽  
Nader A.A. Edress ◽  
Khaled A. Abuhasel ◽  
Ayman A. El-Midany ◽  
Salah E. El-Mofty

Abstract The most frequently investigated salts in coal flotation are chlorides. However, seawater contains additional salts such as sulfates. In coal flotation, magnesium chlorides showed the best results in terms of higher yield and lower ash content compared to the other magnesium salts studied. Therefore, two magnesium salts were tested in this investigation, namely magnesium chloride and magnesium sulfate. The effect of the magnesium salts as well as the optimization of coal flotation were investigated by statistical design of experiments in terms of pulp density, particle size, conditioning time and different dosages of MgCl2 and MgSO4. The flotation results obtained by statistical design show that the ash content was lowest at 8.2% when a mixture of 2 kg/t MgSO4 and 2 kg/t MgCl2 has been used, with pulp density 20%, particle size 400 lm and conditioning time 15 min. The particle size plays an important role in reducing the ash content when the conditioning time has been extended and pulp density has been reduced. The strong interaction between the salts hinders the reduction of the ash content to less than 8.2%.


Author(s):  
Daniel P. Vieira ◽  
Guilherme R. Franzini ◽  
Fredi Cenci ◽  
Andre Fujarra

Abstract An experimental setup was built to investigate the Vortex-Induced Vibration (VIV) phenomenon on yawed and inclined flexible cylinders, in which five yaw angles θ = 0°, 10°, 20°, 30° and 45° and five azimuth angles ß = 0°, 45°, 90°, 135°, and 180° were combined. The experiments were carried out in a towing tank facility at Reynolds numbers from 1800 to 18000, comprising vibrations up to the eighth natural mode. Time histories of displacements were recorded using a submerged optical system that tracks 17 reflective targets. A modal decomposition scheme based on Galerkin's method was applied, aiming multimodal behavior investigations. Such an approach allowed the analysis of the modal amplitude throughout time, revealing interesting results for such a class of VIV tests. The flexible cylinder total response is generally a combination of two or more modes. Only for azimuths 0°, 90°, and 180°, a unimodal response was observed for the two first lock-in regimes. The frequency response showed that, when the response was multimodal, non-dominant modes can follow the vibration frequency of the dominant one. Assuming a priori the Independence Principle (IP) valid to define the reduced velocities (Vr), it was observed that the resonance region was restricted to 3 <= Vr <= 8 for the tested cases, indicating that the IP can be at least partially applied for flexible structures. As the literature scarcely explores the simultaneous yawed and inclined configurations, the present work may contribute to further code validation and improvements regarding the design of slender offshore structures.


Sign in / Sign up

Export Citation Format

Share Document