Signatures of Acoustic Emission Signals Generated During High Speed Cutting

Author(s):  
Andre Sitz ◽  
Udo Schwarz ◽  
J. Kurths ◽  
Doris Maus ◽  
Michael Wiese ◽  
...  

Abstract Acoustic emission signals generated during high speed cutting of steel are investigated. The data are represented in time-folded form. Several methods from linear and nonlinear data analysis based on time- and frequency-domain are applied to the data and reveal signatures of the observed acoustic emission signal. These investigations are first steps for modeling the cutting process by means of differential equations.

2020 ◽  
pp. 2150030
Author(s):  
Jian-Da Wu ◽  
Yu-Han Wong ◽  
Wen-Jun Luo ◽  
Kai-Chao Yao

With the development of artificial intelligence in recent years, deep learning has been widely used in mechanical system signal classification but the impact of different feature extractions on the efficiency and effectiveness of deep learning neural networks is more important. In this study, a vehicle classification based on engine acoustic emission signal in the time domain, the frequency domain and the wavelet transform domain for deep learning network techniques is presented and compared. In signal classification, different feature extractions will show in different decomposition levels and can be used to recognize the various acoustic conditions. In the experimental work, as engines from 10 different ground vehicles operate, the measured sound signal is converted into a digital signal, and the established data set is classified and identified by the deep learning method. The number of samples, identification rate and identification time in the various signal domains are compared and discussed in this study. Finally, the experimental results and data analysis show that by using the wavelet signal and the deep learning method, excellent identification time and identification rate can be achieved, compared with traditional time and frequency domain signals.


Author(s):  
Mohamad Javad Anahid ◽  
Hoda Heydarnia ◽  
Seyed Ali Niknam ◽  
Hedayeh Mehmanparast

It is known that adequate knowledge of the sensitivity of acoustic emission signal parameters to various experimental parameters is indispensable. According to the review of the literature, a lack of knowledge was noticeable concerning the behavior of acoustic emission parameters under a broad range of machining parameters. This becomes more visible in milling operations that include sophisticated chip formation morphology and significant interaction effects and directional pressures and forces. To remedy the aforementioned lack of knowledge, the effect of the variation of cutting parameters on the time and frequency features of acoustic emission signals, extracted and computed from the milling operation, needs to be investigated in a wide aspect. The objective of this study is to investigate the effects of cutting parameters including the feed rate, cutting speed, depth of cut, material properties, as well as cutting tool coating/insert nose radius on computed acoustic emission signals featured in the frequency domain. Similar studies on time-domain signal features were already conducted. To conduct appropriate signal processing and feature extraction, a signal segmentation and processing approach is proposed based on dividing the recorded acoustic emission signals into three sections with specific signal durations associated with cutting tool movement within the work part. To define the sensitive acoustic emission parameters to the variation of cutting parameters, advanced signal processing and statistical approaches were used. Despite the time features of acoustic emission signals, frequency domain acoustic emission parameters seem to be insensitive to the variation of cutting parameters. Moreover, cutting factors governing the effectiveness of acoustic emission signal parameters are hinted. Among these, the cutting speed and feed rate seem to have the most noticeable effects on the variation of time–frequency domain acoustic emission signal information, respectively. The outcomes of this work, along with recently completed works in the time domain, can be integrated into advanced classification and artificial intelligence approaches for numerous applications, including real-time machining process monitoring.


2013 ◽  
Vol 589-590 ◽  
pp. 600-605
Author(s):  
Shun Xing Wu ◽  
Peng Nan Li ◽  
Zhi Hui Yan ◽  
Li Na Zhang ◽  
Xin Yi Qiu ◽  
...  

Tool wear condition monitoring technology is one of the main parts of advanced manufacturing technology and is a hot research direction in recent years. A method based on the characteristics of acoustic emission signal and the advantages of wavelet packets decomposition theory in the non-stationary signal feature extraction is proposed for tool wear state monitoring with monitor the change of acoustic emission signal feature vector. In this paper, through the method, firstly, acoustic emission signal were decomposed into 4 layers with wavelet packet analysis, secondly, the frequency band energy of the have been decomposed signal were extracted, thirdly, the frequency band energy that are sensitive to tool wear were selected as feature vector, and then the corresponding relation between feature vector and tool wear was established , finally, the state of the tool wear can be distinguished according to the change of feature vector. The results show that this method can be feasibility used to monitor tool wear state in high speed milling.


2012 ◽  
Vol 433-440 ◽  
pp. 5666-5671 ◽  
Author(s):  
Ting You ◽  
Pei Jiang Li ◽  
Guan Jun Tong ◽  
Jian Wei Shen

Acoustic emission is generally high-frequency signal with the characteristics of broadband and burstiness, so it is very difficult to acquire acoustic emission signal in real time as well as rapidly, In this paper, an USB based acquisition system for acoustic emission signal is designed, which adopts CPLD as controller and uses two high-speed A/D converters to achieve synchronous acquisition of two-channel acoustic emission signals, The system first puts collected data into a FIFO and then transfers data to host through USB using CY7C68013, The sampling frequency of the system is up to 10MHz and the transmission rate of USB is 40M/S, Hard body impact test and lead-breaking test indicate that the system can achieve real-time acquisition of acoustic emission signal well,


Sign in / Sign up

Export Citation Format

Share Document