GA-Based Multi-Objective Fuzzy Matter-Element Optimization

Author(s):  
Yanwei Zhao ◽  
Ertian Hua ◽  
Guoxian Zhang ◽  
Fangshun Jin

The solving strategy of GA-Based Multi-objective Fuzzy Matter-Element optimization is put forward in this paper to the kind of characters of product optimization such as multi-objective, fuzzy nature, indeterminacy, etc. Firstly, the model of multi-objective fuzzy matter-element optimization is created in this paper, and then it defines the matter-element weightily and changes solving multi-objective optimization into solving dependent function K(x) of the single objective optimization according to the optimization criterion. In addition, modified adaptive macro genetic algorithms (MAMGA) are adopted to solve the optimization problem. It emphatically modifies crossover and mutation operator. By the comparing MAMGA with adaptive macro genetic algorithms (AMGA), not only the optimization is a little better than the latter, but also it reaches the extent to which the effective iteration generation is 62.2% of simple genetic algorithms (SGA). Lastly, three optimization methods, namely fuzzy matter-element optimization, linearity weighted method and fuzzy optimization, are also compared. It certifies that this method is feasible and valid.

2011 ◽  
Vol 90-93 ◽  
pp. 2734-2739
Author(s):  
Ruan Yun ◽  
Cui Song Yu

Non-dominated sorting genetic algorithms II (NSGAII) has been widely used for multi- objective optimizations. To overcome its premature shortcoming, an improved NSGAII with a new distribution was proposed in this paper. Comparative to NSGAII, improved NSGAII uses an elitist control strategy to protect its lateral diversity among current non-dominated fronts. To implement elitist control strategy, a new distribution (called dogmatic distribution) was proposed. For ordinary multi-objective optimization problem (MOP), an ordinary exploration ability of improved NSGAII should be maintained by using a larger shape parameter r; while for larger-scale complex MOP, a larger exploration ability of improved NSGAII should be maintained by using a less shape parameter r. The application of improved NSGAII in multi-objective operation of Wohu reservoir shows that improved NSGAII has advantages over NSGAII to get better Pareto front especially for large-scale complex multi-objective reservoir operation problems.


2019 ◽  
Vol 6 (1) ◽  
pp. 1-11
Author(s):  
Muhamad Nasrul Fata ◽  
Riza Arifudin ◽  
Budi Prasetiyo

Neuro Fuzzy is one method in the field of information technology used in diagnosing an disease. The application of Neuro Fuzzy is to identify disease. Genetic algorithms can be used to find solutions without paying attention to the subject matter specifically, one of which is an optimization problem. Typhoid or typhoid fever is a disease caused by Salmonella enterica bacteria, especially its derivatives. The diagnosis of typhoid fever is not an easy thing to do. This is because some of the indications experienced by patients also appear in other diseases. The number of patients with typhoid fever that requires accuracy in diagnosing typhoid fever based on indications caused. Based on this background this study aims to assist in the diagnosis of typhoid fever with 11 indication variables. This study uses medical record data for typhoid fever in 2017 Tidar Magelang Hospital. The method used is Neuro Fuzzy which optimizes the value of the degree of membership with genetic Algorithms. Then the value of the degree of neuro fuzzy membership is more optimal. The results of this optimization are the diagnosis of typhoid fever based on the variable of indications entered. From the research results obtained from the neuro fuzzy method get an 80% accuracy value and neuro fuzzy optimization results with genetic algorithms with a value of pc 0.5, pm 0.2 and max generation 25 the value of accuracy increases to 90%. Suggestions from this study, need to add more specific indication variables.


2012 ◽  
Vol 516-517 ◽  
pp. 1429-1432
Author(s):  
Yang Liu ◽  
Xu Liu ◽  
Feng Xian Cui ◽  
Liang Gao

Abstract. Transmission planning is a complex optimization problem with multiple deciding variables and restrictions. The mathematical model is non-linear, discrete, multi-objective and dynamic. It becomes complicated as the system grows. So the algorithm adopted affects the results of planning directly. In this paper, a fast non-dominated sorting genetic algorithm (NSGA-II) is employed. The results indicate that NSGA-II has some advantages compared to the traditional genetic algorithms. In transmission planning, NSGA-II is feasible, flexible and effective.


Author(s):  
Nataliya Gulayeva ◽  
Volodymyr Shylo ◽  
Mykola Glybovets

Introduction. As early as 1744, the great Leonhard Euler noted that nothing at all took place in the universe in which some rule of maximum or minimum did not appear [12]. Great many today’s scientific and engineering problems faced by humankind are of optimization nature. There exist many different methods developed to solve optimization problems, the number of these methods is estimated to be in the hundreds and continues to grow. A number of approaches to classify optimization methods based on various criteria (e.g. the type of optimization strategy or the type of solution obtained) are proposed, narrower classifications of methods solving specific types of optimization problems (e.g. combinatorial optimization problems or nonlinear programming problems) are also in use. Total number of known optimization method classes amounts to several hundreds. At the same time, methods falling into classes far from each other may often have many common properties and can be reduced to each other by rethinking certain characteristics. In view of the above, the pressing task of the modern science is to develop a general approach to classify optimization methods based on the disclosure of the involved search strategy basic principles, and to systematize existing optimization methods. The purpose is to show that genetic algorithms, usually classified as metaheuristic, population-based, simulation, etc., are inherently the stochastic numerical methods of direct search. Results. Alternative statements of optimization problem are given. An overview of existing classifications of optimization problems and basic methods to solve them is provided. The heart of optimization method classification into symbolic (analytical) and numerical ones is described. It is shown that a genetic algorithm scheme can be represented as a scheme of numerical method of direct search. A method to reduce a given optimization problem to a problem solvable by a genetic algorithm is described, and the class of problems that can be solved by genetic algorithms is outlined. Conclusions. Taking into account the existence of a great number of methods solving optimization problems and approaches to classify them it is necessary to work out a unified approach for optimization method classification and systematization. Reducing the class of genetic algorithms to numerical methods of direct search is the first step in this direction. Keywords: mathematical programming problem, unconstrained optimization problem, constrained optimization problem, multimodal optimization problem, numerical methods, genetic algorithms, metaheuristic algorithms.


2019 ◽  
Vol 134 ◽  
pp. 01007
Author(s):  
Anna Tailakova ◽  
Alexander Pimonov

Previously developed by the authors of the optimization model for calculating the construction of non-rigid pavement of public roads is proposed to be used for the calculation of the construction of pavement technological career roads. The article describes the optimization methods and algorithms for calculating the construction of pavement. Possibilities of using methods of coordinate-wise descent, multi-start, dynamic programming for the selection of the optimal construction of pavement are presented. Application of genetic algorithms for the decision of an optimization problem of calculation of a construction of pavements on the basis of comparison of their efficiency with efficiency of search methods is proved. Described results of computational experiment of selection of genetic algorithm operators to reduce the volume of calculations and ensure the stability of the results.


2019 ◽  
Vol 8 (1) ◽  
pp. 17-21
Author(s):  
Nika Topuria ◽  
Omar Kikvidze

Use of non-deterministic algorithms for solving multi-variable optimization problems is widely used nowadays. Genetic Algorithm belongs to a group of stochastic biomimicry algorithms, it allows us to achieve optimal or near-optimal results in large optimization problems in exceptionally short time (compared to standard optimization methods). Major advantage of Genetic Algorithm is the ability to fuse genes, to mutate and do selection based on fitness parameter. These methods protect us from being trapped in local optima (Most of deterministic algorithms are prone to getting stuck on local optima). In this paper we experimentally show the upper hand of Genetic Algorithms compared to other traditional optimization methods by solving complex optimization problem.


2016 ◽  
Vol 10 (1) ◽  
pp. 42-49
Author(s):  
Alireza Sahebgharani

Land use planning seeks to divide land, the most valuable resource in the hands of planners, among different land types. During this process, various conflicting objectives are emerged which land use planners should prepare land use plans satisfying these objectives and deal with a large set of data and variable. For this reason, land use allocation is a multi-objective NP-hard optimization problem which is not solvable by the current exact methods. Therefore, solving land use optimization problem relies on the application of meta-heuristics. In this paper, a novel meta-heuristic named parallel particle swarm is developed to allocate seven land types (residential, commercial, cultural, educational, medical, sportive and green space) to Baboldasht district of Isfahan covered by 200 allocation cells with size 1000 m2 for maximizing compactness, compatibility and suitability objective functions. Afterwards, the outputs of the new developed algorithm are compared to the outputs of genetic algorithm. The results demonstrated that the parallel particle swarm is better than genetic algorithm in terms of both solution quality (1.35%) and algorithm efficiency (63.7%). The results also showed that the outputs achieved by both algorithms are better than the current state of land use distribution. Thus, the method represented in this paper can be used as a useful tool in the hands of urban planners and decision makers, and supports the land use planning process.


2019 ◽  
Vol 10 (1) ◽  
pp. 15-37 ◽  
Author(s):  
Muneendra Ojha ◽  
Krishna Pratap Singh ◽  
Pavan Chakraborty ◽  
Shekhar Verma

Multi-objective optimization algorithms using evolutionary optimization methods have shown strength in solving various problems using several techniques for producing uniformly distributed set of solutions. In this article, a framework is presented to solve the multi-objective optimization problem which implements a novel normalized dominance operator (ND) with the Pareto dominance concept. The proposed method has a lesser computational cost as compared to crowding-distance-based algorithms and better convergence. A parallel external elitist archive is used which enhances spread of solutions across the Pareto front. The proposed algorithm is applied to a number of benchmark multi-objective test problems with up to 10 objectives and compared with widely accepted aggregation-based techniques. Experiments produce a consistently good performance when applied to different recombination operators. Results have further been compared with other established methods to prove effective convergence and scalability.


Sign in / Sign up

Export Citation Format

Share Document