Coupling of an Aircraft Landing Gear Simulation Strategy to Parameter Identification Techniques for Enhanced Fidelity

Author(s):  
Todd Rook

Brake-induced vibration often involves strong coupling with the aircraft structure, thereby necessitating a system level understanding. However, testing a full system is both costly and impossible until late in the development cycle. To overcome these issues, it becomes necessary to utilize simulation tools to assess the system behavior at an earlier stage. This paper demonstrates a methodology which implements such simulations to guide appropriate brake component tests that are more tractable for the brake supplier. As a result of this combined simulation and testing, a reduction in actual testing can be achieved. However, the ultimate success of the methodology depends on how well the components and the various parameters are estimated. Consequently, means to improve these estimations are also addressed in this paper.

Author(s):  
I.R. Antypes ◽  
◽  
V.V. Zaitsev ◽  

Currently, the use of composite materials is increasingly used in various areas of the national economy, including the aviation industry. The materials of this article are devoted to the study of the use of composite materials for the manufacture of aircraft landing gear in comparison with the traditionally used brand of steel. As a result of the work carried out, it was found that the slope made of carbon fiber showed a critical stress twice as high as its design made of 30xgsn2a steel. In addition, carbon plastics are superior to high-strength steel in terms of specific strength, stiffness, and tensile strength.


Alloy Digest ◽  
1964 ◽  
Vol 13 (4) ◽  

Abstract ALMAR 20 is a high nickel martensitic steel which is strengthened by precipitation hardening. It has excellent combination of strength and toughness particularly in the presence of notches and cracks. It is recommended for applications such as solid fuel rocket cases and aircraft landing gear. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on low temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SA-162. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
2008 ◽  
Vol 57 (12) ◽  

Abstract Ferrium S53 was developed for use as a structural corrosion resistant steel for aircraft landing gear. S53 has a corrosion resistance equivalent to 440C, strength equivalent to or better than 300M (AMS 6257A) and SAE 4340 (see Mechanical Properties), optimum microstructure features for maximum fatigue resistance, and a surface hardenability equal to or greater than 67 HRC for wear and fatigue. This datasheet is an update to Alloy Digest SS-942 and SS-1003. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating and machining. Filing Code: SA-589. Producer or source: QuesTek Innovations, LLC.


Author(s):  
Ryan Schkoda ◽  
Konstantin Bulgakov ◽  
Kalyan Chakravarthy Addepalli ◽  
Imtiaz Haque

This paper describes the system level, dynamic modeling and simulation strategy being developed at the Wind Turbine Drivetrain Testing Facility (WTDTF) at Clemson University’s Restoration Institute in North Charleston, SC, USA. An extensible framework that allows various workflows has been constructed and used to conduct preliminary analysis of one of the facility’s test benches. The framework dictates that component and subsystem models be developed according to a list of identified needs and modeled in software best suited for the particular task. Models are then integrated according to the desired execution target. This approach allows for compartmentalized model development which is well suited for collaborative work. The framework has been applied to one of the test benches and has allowed researches to begin characterizing its behavior in the time and frequency domain.


Author(s):  
John G. Michopoulos ◽  
John C. Steuben ◽  
Athanasios P. Iliopoulos

Additive Manufacturing (AM) technologies and associated processes, enable successive accretion of material to a domain, and permit manufacturing of highly complex objects which would otherwise be unrealizable. However, the material micro- and meso-structures generated by AM processes can differ remarkably from those arising from conventional manufacturing (CM) methods. Often, a consequence of this fact is the sub-standard functional performance of the produced parts that can limit the use of AM in some applications. In the present work, we propose a rapid functional qualification methodology for AM-produced parts based on a concept defined as differential Performance Signature Qualification (dPSQ). The concept of Performance Signature (PerSig) is introduced both as a vector of featured quantities of interest (QoIs), and a graphical representation in the form of radar or spider graph, representing the QoIs associated with the performance of relevant parts. The PerSigs are defined for both the prequalified CM parts and the AM-produced ones. Comparison measures are defined and enable the construction of differential PerSigs (dPerSig) in a manner that captures the differential performance of the AM part vs. the prequalified CM one. The dPerSigs enable AM part qualification based on how their PerSigs are different from those of prequalified CM parts. After defining the steps of the proposed methodology, we describe its application on a part of an aircraft landing gear assembly and demonstrate its feasibility.


2014 ◽  
Vol 775-776 ◽  
pp. 136-140 ◽  
Author(s):  
Renato Araujo Barros ◽  
Antonio Jorge Abdalla ◽  
Humberto Lopes Rodrigues ◽  
Marcelo dos Santos Pereira

The 4340 are classified as ultra-high strength steels used by the aviation industry and aerospace applications such as aircraft landing gear and several structural applications, usually in quenched and tempered condition. In this situation occurs reduction of toughness, which encourages the study of multiphasic and bainític structures, in order to maintain strength without loss of toughness. In this study, ferritic-pearlitic structure was compared to bainitic and martensitic structure, identified by the reagents Nital, LePera and Sodium Metabisulfite. Sliding wear tests of the type pin-on-disk were realized and the results related to the microstructure of these materials and also to their hardnesses. It is noted that these different microstructures had very similar behavior, concluding that all three tested pairs can be used according to the request level.


2009 ◽  
Vol 2009 (0) ◽  
pp. 321-322
Author(s):  
Kazuhide Isotani ◽  
Kenji Hayama ◽  
Akio Ochi ◽  
Toshiyuki Kumada

Sign in / Sign up

Export Citation Format

Share Document