Requirement-Definition-Confirmation Modeling Approach for Identifying Uncertainties in Product Design Processes

Author(s):  
Toshihiko Nakazawa ◽  
Hiroshi Masuda
2010 ◽  
Vol 426-427 ◽  
pp. 366-370 ◽  
Author(s):  
H.B. Wu ◽  
Yuan Wei Liu

In this paper, we investigated the definition of product design knowledge, design knowledge origin characteristics and design knowledge formalized representation method, etc. We also established the methods to classify and represent the concept-design knowledge and developed an ontology-based model presenting the design knowledge as well as a model for modeling cycles. From the design knowledge management’s angle, design knowledge modeling approach is studied to support the design knowledge development, transfer and reuse for the construction machinery the knowledge modeling.


2012 ◽  
pp. 1613-1637
Author(s):  
William Stuart Miller ◽  
Joshua D. Summers

A new design process modeling approach focused on the information flow through design tools is discussed in this chapter. This approach is applied to three long term mechanical engineering design projects spanning 24 months, 12 months, and 4 months. These projects are used to explore the development of the new modeling approach. This is a first step in a broader effort in 1) modeling of design processes, 2) establishing case study research as a formal approach to design research, and 3) developing new design process tools. The ability of engineers to understand the dynamic nature of information throughout the design processes is critical to their ability to complete these tasks. Such understanding promotes learning and further exploration of the design process allowing the improvement of process models, the establishment of new research approaches, and the development of new tools. Thus, enhancing this understanding is the goal of this research effort.


Author(s):  
Jitesh H. Panchal

Mass-collaborative product development refers to a paradigm where large groups of people compete and collaborate globally to develop new products and services. In contrast to the traditional top-down decomposition-based design processes, the primary mechanism in mass-collaborative product development is bottom-up evolution. Hence, the issues underlying mass-collaborative processes are fundamentally different from those in traditional design processes. For example, instead of determining the best sequence in which activities should be carried out, the emphasis is on developing the right conditions under which product evolution can be fostered. Existing research on product development is primarily focused on top-down design processes. The evolutionary nature of mass-collaborative product development has received very little attention. Specifically, computational models for these processes have not been developed. In this paper, a step toward understanding the fundamental processes underlying mass-collaborative product development using a computational model is presented. The model presented in this paper is based on an agent-based modeling approach, which allows the modeling of the behavior of different entities within a product development scenario and the study of the effect of their interactions. The model captures the information about (i) products as modules and their interdependencies, and (ii) the participants involved and their strategies. The benefits of the agent-based model in understanding mass-collaborative product development are shown using a simple product model. The following aspects of the product development processes are studied: (a) the rate of evolution of the individual modules and the entire product, (b) product evolution patterns and the effect of the number of participants, (c) the effect of prior work on product evolution, (d) the evolution and distribution of participants, and (e) the effect of participant incentives. The agent-based modeling approach is shown as a promising approach for understanding the evolutionary nature of mass-collaborative product development processes.


Author(s):  
Kazuya Oizumi ◽  
Kazuhiro Aoyama

Management of product design projects becomes increasingly difficult as the complexity of products increases. For better management of such projects, well-considered preliminary coordination of design processes is essential. This paper proposes a method for coordination in the design process, which comprises two phases: 1) division of the design work into smaller tasks and sequencing them and 2) establishment of management activities. To facilitate this coordination, an integrated model of a product, process, and organization is proposed. The division and sequencing of design tasks is based upon analysis of the product model. The method utilizes rational prioritization of design parameters, which means identification of parameters that must be first considered for changes. The resulting design processes can show where coordination among design tasks is needed. This, in turn, implies the necessity of management. It is preferable for a different style of management to be adopted for each part. Here, the importance of management and organizational structure prescribe the style of management that should be adopted. In this paper, two approaches to management are discussed: 1) the formation of a pre-agreement, and 2) integration and after-approval. Throughout the paper, the example of a solar boat design is used to explain how the proposed method works and to demonstrate its feasibility.


Author(s):  
Douglas Eddy ◽  
Sundar Krishnamurty ◽  
Ian Grosse ◽  
Jack Wileden ◽  
Kemper Lewis

A sustainable solution should holistically optimize all objectives related to the environment and a product’s cost and performance. As such, it should explicitly address material selection, which significantly affects environmental impacts and other objectives of a product design. While Life Cycle Assessment (LCA) provides credible methods to account for environmental impacts, current methods are not efficient enough for use at the early design stages to prune the entire design space without requiring execution of costly LCA analysis for each design scenario. Alternatively, surrogate modeling approaches can facilitate efficient concept selection during early design stages. However, material properties consist of discrete data sets, thus posing a significant challenge in the construction of surrogate models for numerical optimization. In this work, we address the unique challenges of material selection in sustainable product design in some important ways. Salient features of the robust surrogate modeling approach include achieving manageable dimensionality of LCA with a minimal loss of the important information by the consolidation of significant factors into categorized groups, as well as subsequent efficiency enhancement by a streamlined process that avoids the construction of full LCA. This novel approach combines efficiency of use with a mathematically rigorous representation of any pertinent objectives across an entire design space. To this end, we introduce an adapted two stage sampling approach in surrogate model construction based on a feasible approximation of a Latin Hypercube design at the first stage. The development and implementation of the method are illustrated with the aid of an automotive disc brake design, and the results are discussed in the context of robust optimal material selection in early sustainable product design.


2021 ◽  
Vol 74 (74) ◽  
Author(s):  
Michele Zannoni ◽  
Andreas Sicklinger ◽  
Marco Pezzi

Interfaces and prostheses, whether physical, visual, or virtual, are more and more characterized by an ever-increasing level of complexity. In this designing scenario, the relationship with cognitive sciences, ergonomics, semiotics, and the contribution of enabling technologies is transforming the field of product design into that of the design of complex systems that interface the relationship between human and machine.


2007 ◽  
Vol 72 (612) ◽  
pp. 35-42
Author(s):  
Kazuhiro HIRAO ◽  
Naohiko YAMAMOTO ◽  
Tadashi KATO ◽  
Yoshimi MIZUTANI

Sign in / Sign up

Export Citation Format

Share Document