Integrated Excitation Models of the Helical Gear System

Author(s):  
Takayuki Nishino

The vibration of the helical gear system is generated by three kinds of excitation. The first cause is a displacement excitation due to the tooth surface error. The second is a parametric excitation by the periodical change of the tooth mesh stiffness. The third is a moving load on the tooth surface during the progress of mesh of the teeth. In mesh of a pair of helical gears, the composite load of the distributed load along a contact line moves its operating location from one end of face width to the other end during the process of mesh progress. This moving load causes fluctuation of bearing load that excites the housing. Therefore, it is important to treat gear mesh excitation as a moving load problem. For this purpose, two kinds of mesh models, in which the three different types of excitations above are incorporated, are proposed. In the first model, a pair of gear tooth is represented by the multiple springs and the moving load can be taken into account by the multiple mesh excitation forces that have the phase differences from each other. The second one incorporates the excitation moment into the single tooth spring model. Then, response analysis is done for a simple gear-shaft model. As the result, the moving load causes vibration with non-coupled or independent modes between the drive and driven shaft. Thus, the effectiveness of the proposed method is established.

2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Fang Guo ◽  
Zongde Fang

In the research of gear transmission, the vibration and noise problem has received many concerns all the times. Scholars use tooth modification technique to improve the meshing state of gearings in order to reduce the vibration and noise. However, few of researchers consider the influence of measured manufacturing errors when they do the study of tooth modification. In order to investigate the efficiency of the tooth modification in the actual project, this paper proposes a dynamic model of a helical gear pair including tooth modification and measured manufacturing errors to do a deterministic analysis on the dynamical transmission performance. In this analysis, based on the measured tooth deviation, a real tooth surface (including modification and measured tooth profile error) is fitted by a bicubic B-spline. With the tooth contact analysis (TCA) and loaded tooth contact analysis (LTCA) on the real tooth surface, the loaded transmission error, tooth surface elastic deformation, and load distribution can be determined. Based on the results, the time-varying mesh stiffness and gear mesh impact are computed. Taking the loaded transmission error, measured cumulative pitch error, eccentricity error, time-varying mesh stiffness, and gear mesh impact as the internal excitations, this paper establishes a 12-degree-of-freedom (DOF) dynamic model of a helical gear pair and uses the Fourier series method to solve it. In two situations of low speed and high speed, the gear system dynamic response is analyzed in the time and frequency domains. In addition, an experiment is performed to validate the simulation results. The study shows that the proposed technique is useful and reliable for predicting the dynamic response of a gear system.


Author(s):  
Liming Wang ◽  
Zaigang Chen ◽  
Yimin Shao ◽  
Xi Wang

It was found that the vibration features resulted from tooth crack and sliding on the contact interfaces due to speed variation are very similar with each other, which is difficult to distinguish. So, it is meaningful to study whether they are the same or not. Firstly, a finite element model of a spur gear pair in mesh with tooth crack at pitch circle is established to calculate the effect of tooth crack on gear mesh stiffness. Then, combined with the tooth crack through mesh stiffness, a spur gear dynamic model with six degrees of freedom (dof) is developed to extract the dynamic features affected by the tooth crack. The tooth surface friction due to different relative velocity is also involved to study its effects on the dynamic characteristics of the gear system. Finally, comparisons are made between the dynamic features of the gear system with tooth crack and the tooth surface sliding to expose their effects to supply some theoretical guidance on fault detection.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4731
Author(s):  
Ruiliang Zhang ◽  
Kaida Wang ◽  
Yandong Shi ◽  
Xiuquan Sun ◽  
Fengshou Gu ◽  
...  

Gears are important components of the transmission system. Tooth wear and bearing clearance are significant factors affecting the dynamics of the gear system. In order to reveal the effects of gradual wears and bearing clearance on the gear system dynamics, a six-degrees-of-freedom bending-torsion coupled model of gear-rotor-bearing which considers surface wear, bearing clearance and backlash is established. The Rung-Kutta method is used to solve the nonlinear dynamic system, and the dynamic responses of the system are obtained. The results show that the time-varying mesh stiffness decreases with the tooth surface from the unworn phase to severe wear phase. At the same time, the change of the mesh stiffness in the double-tooth mesh area and single-tooth area are different. Moreover, the amplitude of the X-displacement, Y-displacement and relative gear mesh displacement will be enlarged slightly with the increase of wear depth or bearing clearance. By analyzing variation tendency in the frequency domain, the different order harmonics show the different change characteristic with the variation of the wear phases or bearing clearances. This study provides a theoretical basis for improving the transmission performance and the selection of the bearing clearances in the gear system.


2021 ◽  
pp. 1-16
Author(s):  
Siyu Wang ◽  
Rupeng Zhu

Abstract Based on “slice method”, the improved time-varying mesh stiffness (TVMS) calculation model of helical gear pair with tooth surface wear is proposed, in which the effect of friction force that obtained under mixed elasto-hydrodynamic lubrication (EHL) is considered in the model. Based on the improved TVMS calculation model, the dynamic model of helical gear system is established, then the influence of tooth wear parameters on the dynamic response is studied. The results illustrate that the varying reduction extents of mesh stiffness along tooth profile under tooth surface wear, in addition, the dynamic response in time-domain and frequency-domain present significant decline in amplitude under deteriorating wear condition.


Author(s):  
J Hedlund ◽  
A Lehtovaara

Gear analysis is typically performed using calculation based on gear standards. Standards provide a good basis in gear geometry calculation for involute gears, but these are unsatisfactory for handling geometry deviations such as tooth flank modifications. The efficient utilization of finite-element calculation also requires the geometry generation to be parameterized. A parameterized numerical approach was developed to create discrete helical gear geometry and contact line by simulating the gear manufacturing, i.e. the hobbing process. This method is based on coordinate transformations and a wide set of numerical calculation points and their synchronization, which permits deviations from common involute geometry. As an example, the model is applied to protuberance tool profile and grinding with tip relief. A fairly low number of calculation points are needed to create tooth flank profiles where error is <1 μm.


2018 ◽  
Vol 167 ◽  
pp. 02013
Author(s):  
Jeonghyun Park ◽  
Changjun Seo ◽  
Kwangsuck Boo ◽  
Heungseob Kim

Gear systems are extensively employed in mechanical systems since they allow the transfer of power with a variety of gear ratios. So gears cause the inherent deflections and deformations due to the high pressure which occurs between the meshing teeth when transmit power and results in the transmission error. It is usually assumed that the transmission error and variation of the gear mesh stiffness are the dominant excitation mechanisms. Predicting the static transmission error is a necessary condition to reduce noise radiated from the gear systems. This paper aims to investigate the effect of tooth profile modifications on the transmission error of helical gear. The contact stress analysis was implemented for different roll positions to find out the most critical roll angle in view point of root flank stress. The PPTE (peak-to-peak of transmission error) is estimated at the roll angles by different loading conditions with two dimensional FEM. The optimal profile modification from the root to the tip is proposed.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 609
Author(s):  
Lingli Cui ◽  
Tongtong Liu ◽  
Jinfeng Huang ◽  
Huaqing Wang

This paper investigates the effect of a gear tooth peeling on meshing stiffness of involute gears. The tooth of the gear wheel is symmetric about the axis, and its symmetry will change after the gear spalling, and its meshing stiffness will also change during the meshing process. On this basis, an analytical model was developed, and based on the energy method a meshing stiffness algorithm for the complete meshing process of single gear teeth with peeling gears was proposed. According to the influence of the change of meshing point relative to the peeling position on the meshing stiffness, this algorithm calculates its stiffness separately. The influence of the peeling sizes on mesh stiffness is studied by simulation analysis. As a very important parameter, the study of gear mesh stiffness is of great significance to the monitoring of working conditions and the prevention of sudden failure of the gear box system.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Faysal Andary ◽  
Joerg Berroth ◽  
Georg Jacobs

This study introduces a new potential energy-based design method for simplifying elastic gear bodies in low- to mid-range frequency applications by bridging over the gear teeth with external stiffness elements. The advantage of the introduced method over more traditional approaches, which are either based on rigid gears or on replacing the teeth, is that the complex gear body and its dynamic behavior are preserved, albeit with fewer degrees of freedom. The method is demonstrated on a gear by replacing a single tooth under load and then validated numerically against a typical flexible gear model. The simulation results show good accuracy within the chosen frequency range and with a clear reduction in calculation time compared to the unreduced model. Furthermore, the extension and optimization potential of the results is discussed.


Sign in / Sign up

Export Citation Format

Share Document