Vibration-based fault diagnosis of helical gear pair with tooth surface wear considering time-varying friction coefficient under mixed EHL condition

2021 ◽  
pp. 1-16
Author(s):  
Siyu Wang ◽  
Rupeng Zhu

Abstract Based on “slice method”, the improved time-varying mesh stiffness (TVMS) calculation model of helical gear pair with tooth surface wear is proposed, in which the effect of friction force that obtained under mixed elasto-hydrodynamic lubrication (EHL) is considered in the model. Based on the improved TVMS calculation model, the dynamic model of helical gear system is established, then the influence of tooth wear parameters on the dynamic response is studied. The results illustrate that the varying reduction extents of mesh stiffness along tooth profile under tooth surface wear, in addition, the dynamic response in time-domain and frequency-domain present significant decline in amplitude under deteriorating wear condition.

2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Fang Guo ◽  
Zongde Fang

In the research of gear transmission, the vibration and noise problem has received many concerns all the times. Scholars use tooth modification technique to improve the meshing state of gearings in order to reduce the vibration and noise. However, few of researchers consider the influence of measured manufacturing errors when they do the study of tooth modification. In order to investigate the efficiency of the tooth modification in the actual project, this paper proposes a dynamic model of a helical gear pair including tooth modification and measured manufacturing errors to do a deterministic analysis on the dynamical transmission performance. In this analysis, based on the measured tooth deviation, a real tooth surface (including modification and measured tooth profile error) is fitted by a bicubic B-spline. With the tooth contact analysis (TCA) and loaded tooth contact analysis (LTCA) on the real tooth surface, the loaded transmission error, tooth surface elastic deformation, and load distribution can be determined. Based on the results, the time-varying mesh stiffness and gear mesh impact are computed. Taking the loaded transmission error, measured cumulative pitch error, eccentricity error, time-varying mesh stiffness, and gear mesh impact as the internal excitations, this paper establishes a 12-degree-of-freedom (DOF) dynamic model of a helical gear pair and uses the Fourier series method to solve it. In two situations of low speed and high speed, the gear system dynamic response is analyzed in the time and frequency domains. In addition, an experiment is performed to validate the simulation results. The study shows that the proposed technique is useful and reliable for predicting the dynamic response of a gear system.


2021 ◽  
Vol 1820 (1) ◽  
pp. 012131
Author(s):  
Yongjie Zhang ◽  
Wen Liu ◽  
Chen Song ◽  
Tengjiao Lin ◽  
Mingxu Duan

2020 ◽  
Vol 12 (6) ◽  
pp. 168781402093750
Author(s):  
Hao Dong ◽  
Jianwen Zhang ◽  
Libang Wang

In order to study the influence of tooth surface friction on the non-linear bifurcation characteristics of multi-clearance gear drive system, a 6 degree-of-freedom bending torsional coupled vibration model was established. The time-varying mesh stiffness, backlash, support clearance and damping were considered comprehensively in this non-linear vibration model. Loaded tooth contact analysis was used to calculate the time-varying mesh stiffness. Based on the elasto-hydrodynamic lubrication, the time-varying friction coefficient was calculated. Runge–Kutta numerical method was used to solve the dimensionless dynamic differential equation. Using phase diagram, Poincaré diagram, time history diagram, and spectrum diagram, the influence of tooth surface friction on bifurcation characteristics was studied. The results show that the system undergoes a change from 1-periodic motion, multi-periodic motion, to chaotic motion through bifurcation and catastrophe when the speed changes independently. When the friction coefficient of tooth surface changes from 0, 0.05 to 0.09, the chaotic motion of the system is suppressed. Similarly, with the increase in tooth friction, the chaotic motion characteristics are suppressed. Tooth surface friction is the main factor affecting chaotic motion. With the increase in friction coefficient of tooth surface, the chaos characteristic does not change obviously and the vibration amplitude decreases slightly.


Author(s):  
Yang Hsueh-Cheng ◽  
Zhong-Wei Huang

In this paper, two normal imaginary helical rack cutters were first established. One of these cutters is a skewed-rack cutter with an asymmetrical straight edge. The other is a rack cutter with an asymmetric parabolic profile. Second, the gear’s tooth surface of the asymmetric parabolic rack cutter is modified to be barrel-shaped based on a variable modulus. The tooth thickness of the gear is gradually reduced along the face width of the tooth from the middle of the tooth surface. Then the coordinate relationship between the gears’ blanks and the imaginary helical rack cutters was established. Through the differential geometry, crowned and uncrowned helical gear pairs were generated. Because of human factors, when the gear pair is installed, it is easy to cause the gear pair edge contact. It is necessary to add artificial assembly error settings through the tooth contact analysis to investigate the kinematic errors and contact conditions of the crowned and uncrowned helical gear pair. The mathematical models and analysis methods proposed for the crowned imaginary rack cutter using variable modulus should be useful for the design and production of double crowned helical gears with asymmetric parabolic teeth.


Sign in / Sign up

Export Citation Format

Share Document