Automated Manufacturability Analysis of the Draw Bending of Complex Aluminum Profiles

Author(s):  
Joel Johansson

Manufacturing companies are required to develop and produce products that meet increased requirements from customers and investors on shortened time spans. One key factor in meeting these requirements is the efficiency of the product development and the production preparation process. Design automation is a powerful tool to increase efficiency in these two processes. The benefits of automating the production preparation process are shortened lead-time, improved product performance, and ultimately decreased cost. Further, automation is beneficial as it increases the ability to adapt products to new product specifications with production preparations done in few or in a single step. During the automation process, knowledge about the production preparation process is collected and stored in the corporation systems, thus allowing full control over the design of production equipments. The contribution of this work is a method for connecting knowledge pieces implemented in auxiliary software applications using an inference engine. The knowledge pieces can control CAD-models and automatically generate, execute, and interpret finite element analyses. The presented method allows the automation of corporation know-how developed by skilled engineers over time. Further, it is possible for the resulting systems to meet criteria for good design automation systems such as low effort of developing, low level of investment, user readable and understandable knowledge, scalability, and flexibility. The method is exemplified by an implementation for analyzing manufacturability of the rotary draw bending of extruded sections of aluminum where the sections are complex. The output from the example system is based on established design practice and heuristic knowledge developed over many years of practical experience, rules analytically derived from fundamental physical laws, and finite element calculations. The system applies knowledge to a given specification that a skilled engineer otherwise would do manually. The method is described along with the example system in this paper.

Author(s):  
Joel Johansson

Manufacturing companies continually need to develop and produce products faster, cheaper, and of better quality to meet requirements from customers and investors. One key factor in meeting these requirements is the efficiency of the product development and the production preparation processes. Design automation is a powerful tool for increasing the efficiency of these two processes. The benefits of automating manufacturability analyses, a part of the production preparation process, are shortened lead time, improved product performance, and ultimately decreased cost. Further, the automation is beneficial as it increases the ability to adapt products to new specifications since production preparations are done in few or in a single step. Extruded sections of aluminum (aluminum profiles) have many advantages, especially for light weight structural members, and are used in many products. Many times a secondary forming process, such as bending, is required when these materials are used. The intention of the work presented in this article has been to investigate how to automate the process of finding manufacturing limits of the rotary draw bending of aluminum profiles with focus on the system architecture needed to make such systems flexible. Finding the forming limits of an aluminum profile is not a trivial task. This is because the limits depend not only on the profile shape but also on the layout of the tool. Hence, simulations have to be done to evaluate different designs. A prototype system was developed to explore what was needed to automate simulation of the rotary draw bending of aluminum profiles, and subsequently, analyze the simulated production outcome with respect to wrinkling and developed length.


2021 ◽  
pp. 24-30
Author(s):  
A.B. Istomin ◽  
I.N. Gemba ◽  
I.V. Lizunov

The article analyzes the influence of errors from elastic deformations on the accuracy of processing in the conditions of complex automation. Different variants of multi-tool processing are considered: parallel processing, when different tools are alternately, one after the other, involved in the processing of the workpiece surfaces, and parallel-sequential processing, when different surfaces of the workpiece are processed simultaneously by several tools located in the working position. Design automation in machine-building production is part of the complex problem of automation of engineering work in all areas of the functioning of a modern production system. Therefore, when creating design automation systems, its connections in the general complex of automation of engineering activities in the production cycle should be taken into account. In general, the automation of the engineer's work is task planning, design and technological preparation of production, and management of the production system. The choice of favorable cutting modes for multi-tool processing is a difficult task, since, along with taking into account the features of each individual tool, it is necessary to make a general analysis of the entire setup, i.e. the set of tools used on the machine, and the distribution of processing transitions among them. Machine-building production is currently characterized by the desire to constantly update the range of released products. The requirements of multi-product manufacture can be met under the condition of its automation, which covers both the automation of production preparation and management. The article provides recommendations for reducing the error from elastic deformations in the conditions of complex automation. English version ofthe article is available at URL: https://panor.ru/articles/multi-tool-machining-in-complex-process-automation/65225.html


2013 ◽  
Vol 774-776 ◽  
pp. 1766-1769
Author(s):  
Zhi Gang Xu ◽  
Zi Xiang Li ◽  
Jin Wang ◽  
Tao Tao Liu ◽  
Chun Po Sun

Situated reconstitution is proposed in this paper to cope with un-manifold polyhedral from the function to form mapping processes. Specifically the situated reconstitution is not simply re-arrangement of geometric elements, mainly face entities in the un-manifold polyhedral, rather it needs a complex geometric/algebraic reasoning to reconstitute a manifold object, novel mathematical as well as AI techniques are introduced in this paper, several tools are developed to testify the proposed situated reconstitution in the “top-down” design automation systems.


2015 ◽  
Vol 32 (1) ◽  
pp. 129-154
Author(s):  
Ruding Lou ◽  
Jean-Philippe Pernot ◽  
Franca Giannini ◽  
Philippe Veron ◽  
Bianca Falcidieno

Purpose – The purpose of this paper is to set up a new framework to enable direct modifications of volume meshes enriched with semantic information associated to multiple partitions. An instance of filleting operator is prototyped under this framework and presented in the paper. Design/methodology/approach – In this paper, a generic mesh modification operator has been designed and a new instance of this operator for filleting finite element (FE) sharp edges of tetrahedral multi-partitioned meshes is also pro-posed. The filleting operator works in two main steps. The outer skin of the tetrahedral mesh is first deformed to round user-specified sharp edges while satisfying constraints relative to the shape of the so-called Virtual Group Boundaries. Then, in the filleting area, the positions of the inner nodes are relaxed to improve the aspect ratio of the mesh elements. Findings – The classical mainstream methodology for product behaviour optimization involves the repetition of four steps: CAD modelling, meshing of CAD models, enrichment of models with FE simulation semantics and FEA. This paper highlights how this methodology could be simplified by two steps: simulation model modification and FEA. The authors set up a new framework to enable direct modifications of volume meshes enriched with semantic information associated to multiple partitions and the corresponding fillet operator is devised. Research limitations/implications – The proposed framework shows only a paradigm of direct modifications of semantic enriched meshes. It could be further more improved by adding or changing the modules inside. The fillet operator does not take into account the exact radius imposed by user. With this proposed fillet operator the mesh element density may not be enough high to obtain wished smoothness. Originality/value – This paper fulfils an identified industry need to speed up the product behaviour analysis process by directly modifying the simulation semantic enriched meshes.


Author(s):  
Bernhard Bettig ◽  
Vikram Bapat ◽  
Balaji Bharadwaj

Computers are being used extensively in the manufacturing industry to design and analyze products. In spite of the power of existing CAD systems and potential power of current Design Automation systems, we believe that they possess an inherent limitation that keeps them from aligning with and fully supporting the design process. Specifically, all of these systems are based on using parametric operators to generate valid designs. This paper examines the limitations of parametric operators for CAD and design automation and shows how “variational” methods could be used. An approach using variational methods is compared with traditional CAD and design automation methods. The paper also proposes a language of objects and relationships to represent design requirements. This work is a step towards realizing an interactive design synthesis system that can represent and satisfy design requirements.


2019 ◽  
Vol 943 ◽  
pp. 43-47
Author(s):  
Xia Zhu ◽  
Keiji Ogi ◽  
Nagatoshi Okabe

The purpose of this research is to determine the state inside the material using finite-element analysis and to improve the performance of a rotary-draw bending forming by clarifying the mechanism of wrinkle generation. An analytical model of rotational drawing was made by using the general-purpose nonlinear finite-element analysis software MSC Marc, and the analytical results were compared with experimental results to verify the validity of the model. Furthermore, the mechanism of wrinkle generation was investigated. With the progress of processing, wrinkles occur not in the R part but in the original tube-side straight-tube part. The coefficient of friction between the tube material and the R portion of the bending mold promotes the occurrence of wrinkles and the growth of the generated wrinkles. Because wrinkles occur even if the friction coefficient between the tube material and bending mold R part is ignored, the generation condition of wrinkles also depends on parameters other than the friction coefficient.


2017 ◽  
Vol 11 ◽  
pp. 1239-1246 ◽  
Author(s):  
B. Barbosa ◽  
M.T. Pereira ◽  
F.J.G. Silva ◽  
R.D.S.G. Campilho

Sign in / Sign up

Export Citation Format

Share Document