The Part Count Tool (PACT) for Concept Selection

Author(s):  
Tarang Parashar ◽  
Katie Grantham Lough ◽  
Robert B. Stone

This paper presents a part count tool that automates the consideration of manufacturing cost during the conceptual design phase by predicting part count for a particular product concept. With an approximate number of parts per product in the conceptual design phase, the designer can estimate the cost associated with the product. On the basis of the cost, the designer can make changes according to budget requirements. The part count tool will also aid in ranking the design concepts by number of components for a product. This tool utilizes existing automated concept generation algorithms to generate the design concepts. It extracts the available data from the Missouri S&T Design Repository to compute an average number of parts per component type in the repository and then calculates an average part count for new concepts. This data can subsequently be used by designers to estimate product cost. The part count tool also uses an algorithm to determine how to connect two non compatible components through the addition of mutually compatible components. While emphasis is placed on the average parts per product in evaluating designs, the overall functional requirement of the product is also considered.

Author(s):  
Christian Noon ◽  
Ruqin Zhang ◽  
Eliot Winer ◽  
Jim Oliver ◽  
Brian Gilmore ◽  
...  

Currently, new product concepts are evaluated by developing detailed virtual models with Computer Aided Design (CAD) tools followed by evaluation analyses (e.g., finite element analysis, computational fluid dynamics, etc.). Due to the complexity of these evaluation methods, it is generally not possible to model and analyze each of the ideas generated throughout the conceptual design phase of the design process. Thus, promising ideas may be eliminated based solely on insufficient time to model and assess them. Additionally, the analysis performed is usually of much higher detail than needed for such early assessment. By eliminating the time-consuming CAD complexity, engineers could spend more time evaluating additional concepts. To address these issues, a software framework, the Advanced Systems Design Suite (ASDS), was created. The ASDS incorporates a PC user interface with an immersive virtual reality (VR) environment to ease the creation and assessment of conceptual design prototypes individually or collaboratively in a VR environment. Assessment tools incorporate metamodeling approximations and immersive visualization to evaluate the validity of each concept. In this paper, the ASDS framework and interface along with specifically designed immersive VR assessment tools such as state saving, dynamic viewpoint creation, and animation playback are presented alongside a test case example of redesigning a Boeing 777 in the conceptual design phase.


Author(s):  
Ryan R. Dalling ◽  
B. Levi Haupt ◽  
Robert H. Todd

Previous research and publications at Brigham Young University have established the new positive engagement continuously variable transmission (PECVT) family of continuously variable transmissions (CVTs). Various embodiments of PECVTs have been identified and surveyed; resulting in the identification of the behavior termed the non-integer tooth problem. Additional research has been conducted to further explore the non-integer tooth problem and identify a feasible solution to the problem through the use of a product development method. This publication will address the conceptual design phase of the product development process for a PECVT. This will include: the identification of the operating conditions of a PECVT, i.e. further detail of the non-integer tooth problem, identification of required characteristics for a solution, design specifications, concept generation, concept evaluation, and concept selection. The conceptual design phase will result in a conceptual solution which will satisfy the identified characteristic requirement and designs specifications.


2013 ◽  
Vol 633 ◽  
pp. 15-35 ◽  
Author(s):  
Mladenko Kajtaz ◽  
Aleksandar Subic ◽  
Monir Takla

The paper presents a novel approach to comparative evaluation of engineering design concepts that exhibit non-linear structural behaviour under load. The developed method has extended the substructures technique in order to apply the Finite Element Analysis (FEA) method to complex non-linear structural problems in the conceptual design phase. As conventional FE models based on substructures allow only linear analysis, it was necessary in this research to introduce a new algorithm capable of linearizing non-linear structural problems with sufficient accuracy in order to enable comparative evaluation of design concepts relative to each other under the given constraints and loading conditions. A comparative study with respect to model size, efficiency, accuracy and confidence was performed to validate the developed method. Obtained results indicate significant improvement over more traditional approaches to applying FEA in the conceptual design phase. The improvements achieved using the developed method compared to the traditional FE based approach are superior by a factor of 2.7 in efficiency and by a factor of 4.5 in confidence while not sacrificing the optimality of the solutions.


Author(s):  
Shun Takai

In a conceptual design phase, engineers need to estimate, as accurately as possible, the cost of system developed from each concept (cost of concept). If engineers overestimate cost, engineers may be forced to unnecessarily cancel system development. On the other hand, if engineers underestimate cost, the final system may not be as profitable as initially expected. When engineers make a critical decision to select a concept, the dilemma is that there is typically no or limited information to accurately estimate cost of concept. This paper proposes a belief-based approach for estimating a cost of system in a conceptual design phase. In the proposed approach, engineers benchmark existing systems in the market that are similar to the new system. For these benchmarked systems, engineers estimate costs by subtracting profit margins from observed prices. Engineers develop a distribution of cost for the new system from these estimated costs.


Author(s):  
Daniel Krus ◽  
Katie Grantham Lough

When designing a product, the earlier the potential risks can be identified, the more costs can be saved, as it is easier to modify a design in its early stages. Several methods exist to analyze the risk in a system, but all require a mature design. However, by applying the concept of “common interfaces” to a functional model and utilizing a historical knowledge base, it is possible to analyze chains of failures during the conceptual phase of product design. This paper presents a method based on these “common interfaces” to be used in conjunction with other methods such as Risk in Early Design in order to allow a more complete risk analysis during the conceptual design phase. Finally, application of this method is demonstrated in a design setting by applying it to a thermal control subsystem.


2017 ◽  
Vol 107 (09) ◽  
pp. 640-646
Author(s):  
J. Jaensch ◽  
A. Neyrinck ◽  
A. Lechler ◽  
A. Prof. Verl

Maschinen und besonders Anlagen werden meist in individuellen Prozessen entwickelt. Bereits in der Angebots- und Konzeptionsphase werden im direkten Austausch mit dem Auftraggeber unterschiedliche Varianten diskutiert und iteriert. Zur Bewertung der Varianten sind neben den Anschaffungskosten unter anderem laufzeitabhängige Größen wie Taktzeiten und Energieeffizienz zu untersuchen. Der Beitrag stellt einen Ansatz zur simulationsbasierten Untersuchung für die automatisierte Variantengenerierung von Anlagen vor.   The development of machines or plants is a very individual process. Within the conceptual design phase, many different variants have to be discussed with customers and adapted to their needs. For a decent evaluation of the different variants, many parameters beyond static values such as costs are important. Term-dependent values like cycle times and energy efficiency also have to be investigated. This paper presents a method for the automated generation of plant variants based on simulation.


2018 ◽  
Vol 29 (11) ◽  
pp. 665-689
Author(s):  
C. Hartmann ◽  
R. Chenouard ◽  
E. Mermoz ◽  
A. Bernard

Author(s):  
R. J. Engel ◽  
P. J. Tyler ◽  
L. R. Wood ◽  
D. T. Entenmann

Westinghouse has been a strong supporter of Reliability, Availability, and Maintainability (RAM) principles during product design and development. This is exemplified by the actions taken during the design of the 501F engine to ensure that high reliability and availability was achieved. By building upon past designs, utilizing those features most beneficial, and improving other areas, a highly reliable product was developed. A full range of RAM tools and techniques were utilized to achieve this result, including reliability allocations, modelling, and effective redesign of critical components. These activities began during the conceptual design phase and will continue throughout the life cycle of these engines until they are decommissioned.


Sign in / Sign up

Export Citation Format

Share Document