Wireless Charging of a Supercapacitor Model Vehicle Using Magnetic Resonance Coupling

Author(s):  
Minfan Fu ◽  
Tong Zhang ◽  
Chengbin Ma ◽  
Xinen Zhu

This paper discusses the basic considerations and development of a prototype demo system for the wireless charging of supercapacitor electric vehicles, which uses magnetic resonance coupling. Considering future ubiquitous wireless vehicle stationary and dynamic charging facilities, supercapacitor could be an ideal device to store a reasonable amount of electrical energy for a relatively short period of time. The prototype system includes all the major functional components for an electric vehicle’s powertrain and wireless charging system including coils for energy emitting and receiving, a FPGA PWM input generation board, high frequency DC/AC inverter and AC/DC rectifier circuits, an on-board supercapacitor module, sensors for SOC level measurement and charging position detection, etc. All the components are integrated into a model electric vehicle. The prototype system well demonstrates the idea of the fast and frequent wireless charging of on-board supercapacitors. Promising results from initial experiments are explained; while further investigations, optimized design of components and a system-level optimization are needed.

Author(s):  
Chengbin Ma ◽  
Minfan Fu ◽  
Xinen Zhu

In this paper, the technologies for electric vehicle wireless charging are reviewed including the inductive coupling, magnetic resonance coupling and microwave. Among them, the magnetic resonance coupling is promising for vehicle charging mainly due to its high efficiency and relatively long transfer range. The design and configuration of the magnetic resonance coupling based wireless charging system are introduced. A basic experimental setup and a prototype electric vehicle wireless charging system are developed for experimental and research purposes. Especially the prototype system well demonstrates the idea of fast and frequent wireless charging of supercapacitor electric vehicles using magnetic resonance coupling. Though the idea of wireless energy transfer looks sophisticated, it is proved to be a handy technology from the work described in the paper. However, both component and system-level optimization are still very challenging. Intensive investigations and research are expected in this aspect.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2842
Author(s):  
Adel El-Shahat ◽  
Erhuvwu Ayisire

Dynamic wireless power systems are an effective way to supply electric vehicles (EVs) with the required power while moving and to overcome the problems of low mileage and extensive charging times. This paper targets modeling and control for future dynamic wireless charging using magnetic resonance coupling because of the latter’s efficiency. We present a 3D model of transmitter and receiver coils for EV charging with magnetic resonance wireless power developed using ANSYS Maxwell. This model was incorporated into the physical design of the magnetic resonance coupling using ANSYS Simplorer in order to optimize the power. The estimated efficiency was around 92.1%. The transient analysis of the proposed circuit was investigated. A closed-loop three-level cascaded PI controller- was utilized for wireless charging of an EV battery. The controller was designed to eliminate the voltage variation resulting from the variation in the space existing between coils. A single-level PI controller was used to benchmark the proposed system’s performance. Furthermore, solar-powered wireless power transfer with a maximum power point tracker was used to simulate the wireless charging of an electric vehicle. The simulation results indicated that the EV battery could be charged with a regulated power of 12 V and 5 A through wireless power transfer. Fuzzy logic and neuro-fuzzy controllers were employed for more robustness in the performance of the output. The neuro-fuzzy controller showed the best performance in comparison with the other designs. All the proposed systems were checked and validated using the OPAL Real-Time simulator. The stability analysis of the DC–DC converter inside the closed-loop system was investigated.


AIP Advances ◽  
2018 ◽  
Vol 8 (5) ◽  
pp. 055004 ◽  
Author(s):  
Junhua Wang ◽  
Meilin Hu ◽  
Changsong Cai ◽  
Zhongzheng Lin ◽  
Liang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document