Inverse Characterization of Composite Materials Using Surrogate Models

Author(s):  
John Steuben ◽  
John Michopoulos ◽  
Athanasios Iliopoulos ◽  
Cameron Turner

In recent years, methods for the inverse characterization of mechanical properties of materials have seen significant growth, mainly because of the availability of enabling technologies like full-field measurement techniques, inexpensive high performance computing resources, and automated testing. Unfortunately, as the complexity of the material system increases even the most advanced methods for inverse characterization produce results in compute times that are not practical for real time applications. To overcome this limitation we present a method that uses Non-Uniform Rational B-spline (NURBs) based surrogate modeling to generate a very efficient representation of the material model and the associated objective function. In addition, we present a method for identifying the global minimum of this objective function that corresponds to the elastic properties that characterize the material. Validation of this methodology is achieved through synthetic numerical experiments that include both isotropic and orthotropic specimens defined both analytically and numerically. Statistical analyses on the effects of experimental noise supplement these results. We conclude with remarks regarding the use of this technique to recover the elastic properties from materials tested utilizing multiaxial robotic systems.

2021 ◽  
Author(s):  
Long Wang ◽  
Wei-Hung Chiang ◽  
Kenneth J. Loh

Abstract High-performance piezoresistive nanocomposites have attracted extensive attention because of their significant potential as next-generation sensing devices for a broad range of applications, such as monitoring structural integrity and human performance. While various piezoresistive nanocomposites have been successfully developed using different material compositions and manufacturing techniques, current development procedures typically involve empirical trial and error that can be laborious, inefficient, and, most importantly, unpredictable. Therefore, this paper aims to propose and validate a topological design-based methodology to strategically manipulate the piezoresistive effect of nanocomposites to achieve a wide range of optimized strain sensitivities without changing the material system. In particular, this work designed patterned nanocomposite thin films with stress-concentrating and stress-releasing topologies. The strain sensing properties of the different topology nanocomposites were characterized and compared via electromechanical experiments. Those results were compared to both linear and nonlinear piezoresistive material model numerical simulations. Both the experimental and computational results indicated that the stress-concentrating topologies could enhance strain sensitivity, whereas the stress-releasing topologies could significantly suppress bulk film piezoresistivity.


2006 ◽  
Vol 3-4 ◽  
pp. 9-16 ◽  
Author(s):  
M. Grédiac

The wealth of information provided by full-field measurement techniques is very useful in experimental mechanics. Among different possible applications, full-field measurements can be used to identify parameters governing constitutive equations from heterogeneous strain fields. This keynote lecture first describes the different possible uses of such measurements. It then focuses on the virtual fields method which has been proposed to extract constitutive parameters from full-field measurements. Finally, the method is compared with the finite element model updating technique which is usually used for solving such a problem.


Sign in / Sign up

Export Citation Format

Share Document