Topological Design of Strain Sensing Nanocomposites

Author(s):  
Long Wang ◽  
Wei-Hung Chiang ◽  
Kenneth J. Loh

Abstract High-performance piezoresistive nanocomposites have attracted extensive attention because of their significant potential as next-generation sensing devices for a broad range of applications, such as monitoring structural integrity and human performance. While various piezoresistive nanocomposites have been successfully developed using different material compositions and manufacturing techniques, current development procedures typically involve empirical trial and error that can be laborious, inefficient, and, most importantly, unpredictable. Therefore, this paper aims to propose and validate a topological design-based methodology to strategically manipulate the piezoresistive effect of nanocomposites to achieve a wide range of optimized strain sensitivities without changing the material system. In particular, this work designed patterned nanocomposite thin films with stress-concentrating and stress-releasing topologies. The strain sensing properties of the different topology nanocomposites were characterized and compared via electromechanical experiments. Those results were compared to both linear and nonlinear piezoresistive material model numerical simulations. Both the experimental and computational results indicated that the stress-concentrating topologies could enhance strain sensitivity, whereas the stress-releasing topologies could significantly suppress bulk film piezoresistivity.

2020 ◽  
pp. 004051752093223 ◽  
Author(s):  
Bahaa Almohammed ◽  
Alyani Ismail ◽  
Aduwati Sali

The latest progress in the emerging wireless technology has resulted in the development of wearable antennas made of various fabrics. This unique antenna is an integral part of the wireless body area network (WBAN). A wide range of applications are made by the wearable antennas in the fields of the Internet of Things, sport, defense, public safety, telemedicine, navigation, and tracking. The focus point of the current review is the recent progress of electro-textiles research with special attention on the materials properties, criteria, and manufacturing techniques. Existing as well as upcoming materials specifically and potentially used for electro-textile fabrication are discussed. Various manufacturing techniques are discussed to match the importance of material selection. The current work highlights the performance when the antennas tagging are applied in WBAN objects and illustrates how the human body affects the performance of the wearable antenna and vice versa. The findings of this review by introducing the best materials, techniques, and designs could be used in future to provide high-performance materials for body-centric applications.


2020 ◽  
Vol 10 (16) ◽  
pp. 5556
Author(s):  
Torsten Fischer ◽  
Bernd Kuhn ◽  
Detlef Rieck ◽  
Axel Schulz ◽  
Ralf Trieglaff ◽  
...  

Strong efforts are made internationally to optimize the process control of laser additive manufacturing processes. For this purpose, advanced detectors and monitoring software are being developed to control the quality of production. However, commercial suppliers of metal powders and part manufacturers are essentially focused on well-established materials. This article demonstrates the potential of optimized process control. Furthermore, we outline the development of a new high temperature structural steel, tailored to best utilize the advantages of additive manufacturing techniques. In this context, the impact of production-induced porosity on fatigue strength of austenitic 316L is presented. Additionally, we discuss the first conceptual results of a novel ferritic steel, named HiperFer (High Performance Ferrite), which was designed for increased fatigue strength. This ferritic, Laves phase-strengthened, stainless steel could be used for a wide range of structural components in power and (petro)chemical engineering at maximum temperatures ranging from about 580 to 650 °C. This material benefits from in situ heat treatment and counteracts process-related defects by “reactive” crack obstruction mechanisms, hampering both crack initiation and crack propagation. In this way, increased fatigue resistance and safety can be achieved.


Author(s):  
John Steuben ◽  
John Michopoulos ◽  
Athanasios Iliopoulos ◽  
Cameron Turner

In recent years, methods for the inverse characterization of mechanical properties of materials have seen significant growth, mainly because of the availability of enabling technologies like full-field measurement techniques, inexpensive high performance computing resources, and automated testing. Unfortunately, as the complexity of the material system increases even the most advanced methods for inverse characterization produce results in compute times that are not practical for real time applications. To overcome this limitation we present a method that uses Non-Uniform Rational B-spline (NURBs) based surrogate modeling to generate a very efficient representation of the material model and the associated objective function. In addition, we present a method for identifying the global minimum of this objective function that corresponds to the elastic properties that characterize the material. Validation of this methodology is achieved through synthetic numerical experiments that include both isotropic and orthotropic specimens defined both analytically and numerically. Statistical analyses on the effects of experimental noise supplement these results. We conclude with remarks regarding the use of this technique to recover the elastic properties from materials tested utilizing multiaxial robotic systems.


Author(s):  
Swarn Jha ◽  
Yan Chen ◽  
Rick Wang ◽  
Mohamed Gharib ◽  
Hong Liang

Abstract High performance coatings are needed for downhole drilling applications. The main challenge in developing such coatings is to impart desirable surface characteristics such as low friction, high wear and corrosion resistance, while retaining structural integrity and consistency. Most coatings do not sustain the conditions in harsh environments resulting in failure and safety hazards. In this research, we designed high temperature coatings with integration of components that display wear resistance. After synthesis, they exhibited promising lubrication performance. Specifically, a simple and low-cost method was developed that can process the coating consisting high-temperature ceramics such as BN, SiC. Hybridizing graphite and α-zirconium phosphate as friction modifiers ideal for use with metals, alloys and ceramics, this coating is durable in a wide range of temperatures. Experimental results showed that the friction coefficient obtained for our coating was 0.17 as against the 0.50 value obtained for steel on steel sliding contact. In this work, we detail about the composition, microstructure, and tribological evaluation of the coatings tailored for drilling applications.


2019 ◽  
Vol 15 (3) ◽  
pp. 273-279
Author(s):  
Shweta G. Rangari ◽  
Nishikant A. Raut ◽  
Pradip W. Dhore

Background:The unstable and/or toxic degradation products may form due to degradation of drug which results into loss of therapeutic activity and lead to life threatening condition. Hence, it is important to establish the stability characteristics of drug in various conditions such as in temperature, light, oxidising agent and susceptibility across a wide range of pH values.Introduction:The aim of the proposed study was to develop simple, sensitive and economic stability indicating high performance thin layer chromatography (HPTLC) method for the quantification of Amoxapine in the presence of degradation products.Methods:Amoxapine and its degraded products were separated on precoated silica gel 60F254 TLC plates by using mobile phase comprising of methanol: toluene: ammonium acetate (6:3:1, v/v/v). The densitometric evaluation was carried out at 320 nm in reflectance/absorbance mode. The degradation products obtained as per ICH guidelines under acidic, basic and oxidative conditions have different Rf values 0.12, 0.26 and 0.6 indicating good resolution from each other and pure drug with Rf: 0.47. Amoxapine was found to be stable under neutral, thermal and photo conditions.Results:The method was validated as per ICH Q2 (R1) guidelines in terms of accuracy, precision, ruggedness, robustness and linearity. A good linear relationship between concentration and response (peak area and peak height) over the range of 80 ng/spot to 720 ng/spot was observed from regression analysis data showing correlation coefficient 0.991 and 0.994 for area and height, respectively. The limit of detection (LOD) and limit of quantitation (LOQ) for area were found to be 1.176 ng/mL and 3.565 ng/mL, whereas for height, 50.063 ng/mL and 151.707 ng/mL respectively.Conclusion:The statistical analysis confirmed the accuracy, precision and selectivity of the proposed method which can be effectively used for the analysis of amoxapine in the presence of degradation products.


2019 ◽  
Vol 5 (4) ◽  
pp. 270-277 ◽  
Author(s):  
Vijay Kumar ◽  
Simranjeet Singh ◽  
Ragini Bhadouria ◽  
Ravindra Singh ◽  
Om Prakash

Holoptelea integrifolia Roxb. Planch (HI) has been used to treat various ailments including obesity, osteoarthritis, arthritis, inflammation, anemia, diabetes etc. To review the major phytochemicals and medicinal properties of HI, exhaustive bibliographic research was designed by means of various scientific search engines and databases. Only 12 phytochemicals have been reported including biologically active compounds like betulin, betulinic acid, epifriedlin, octacosanol, Friedlin, Holoptelin-A and Holoptelin-B. Analytical methods including the Thin Layer Chromatography (TLC), High-Performance Thin Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography With Mass Spectral (LC-MS) analysis have been used to analyze the HI. From medicinal potency point of view, these phytochemicals have a wide range of pharmacological activities such as antioxidant, antibacterial, anti-inflammatory, and anti-tumor. In the current review, it has been noticed that the mechanism of action of HI with biomolecules has not been fully explored. Pharmacology and toxicological studies are very few. This seems a huge literature gap to be fulfilled through the detailed in-vivo and in-vitro studies.


Proceedings ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 25
Author(s):  
Antonio Garrido Marijuan ◽  
Roberto Garay ◽  
Mikel Lumbreras ◽  
Víctor Sánchez ◽  
Olga Macias ◽  
...  

District heating networks deliver around 13% of the heating energy in the EU, being considered as a key element of the progressive decarbonization of Europe. The H2020 REnewable Low TEmperature District project (RELaTED) seeks to contribute to the energy decarbonization of these infrastructures through the development and demonstration of the following concepts: reduction in network temperature down to 50 °C, integration of renewable energies and waste heat sources with a novel substation concept, and improvement on building-integrated solar thermal systems. The coupling of renewable thermal sources with ultra-low temperature district heating (DH) allows for a bidirectional energy flow, using the DH as both thermal storage in periods of production surplus and a back-up heating source during consumption peaks. The ultra-low temperature enables the integration of a wide range of energy sources such as waste heat from industry. Furthermore, RELaTED also develops concepts concerning district heating-connected reversible heat pump systems that allow to reach adequate thermal levels for domestic hot water as well as the use of the network for district cooling with high performance. These developments will be demonstrated in four locations: Estonia, Serbia, Denmark, and Spain.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1022
Author(s):  
Rashid G. Bikbaev ◽  
Ivan V. Timofeev ◽  
Vasiliy F. Shabanov

Optical sensing is one of many promising applications for all-dielectric photonic materials. Herein, we present an analytical and numerical study on the strain-responsive spectral properties of a bioinspired sensor. The sensor structure contains a two-dimensional periodic array of dielectric nanodisks to mimic the optical behavior of grana lamellae inside chloroplasts. To accumulate a noticeable response, we exploit the collective optical mode in grana ensemble. In higher plants, such a mode appears as Wood’s anomaly near the chlorophyll absorption line to control the photosynthesis rate. The resonance is shown persistent against moderate biological disorder and deformation. Under the stretching or compression of a symmetric structure, the mode splits into a couple of polarized modes. The frequency difference is accurately detected. It depends on the stretch coefficient almost linearly providing easy calibration of the strain-sensing device. The sensitivity of the considered structure remains at 5 nm/% in a wide range of strain. The influence of the stretching coefficient on the length of the reciprocal lattice vectors, as well as on the angle between them, is taken into account. This adaptive phenomenon is suggested for sensing applications in biomimetic optical nanomaterials.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 37
Author(s):  
Mayra K. S. Monteiro ◽  
Djalma R. Da Silva ◽  
Marco A. Quiroz ◽  
Vítor J. P. Vilar ◽  
Carlos A. Martínez-Huitle ◽  
...  

This study aims to investigate the applicability of a hybrid electrochemical sensor composed of cork and graphite (Gr) for detecting caffeine in aqueous solutions. Raw cork (RAC) and regranulated cork (RGC, obtained by thermal treatment of RAC with steam at 380 °C) were tested as modifiers. The results clearly showed that the cork-graphite sensors, GrRAC and GrRGC, exhibited a linear response over a wide range of caffeine concentration (5–1000 µM), with R2 of 0.99 and 0.98, respectively. The limits of detection (LOD), estimated at 2.9 and 6.1 µM for GrRAC and GrRGC, suggest greater sensitivity and reproducibility than the unmodified conventional graphite sensor. The low-cost cork-graphite sensors were successfully applied in the determination of caffeine in soft drinks and pharmaceutical formulations, presenting well-defined current signals when analyzing real samples. When comparing electrochemical determinations and high performance liquid chromatography measurements, no significant differences were observed (mean accuracy 3.0%), highlighting the potential use of these sensors to determine caffeine in different samples.


Sign in / Sign up

Export Citation Format

Share Document