Hobbing of Bevel and Hypoid Gears

Author(s):  
David B. Dooner

The paper presents a hyperboloidal hob cutter similar to a cylindrical hob cutter used to fabricate spur and helical gear elements today. This hyperboloidal cutter can be used to manufacture bevel and hypoid gear elements using an existing CNC hobbing machine. These bevel and hypoid gear elements can be either spur or spiral. This hyperboloidal hob cutter is entirely different from the circular face cutters today as part of face hobbing. A brief overview of the existing circular face cutting technology is presented along with some of its geometric limitations. Subsequently, concepts of the hyperboloidal hob cutter are presented. These concepts include crossed hyperboloidal gears, cutter spiral angle, invariant speed relations, and cutter coordinates. Two illustrative examples are presented to demonstrate the concept of the hyperboloidal hob cutter. The first example is a spur bevel gear pair and the second example is a spiral hypoid gear pair. Virtual models of the cutter in mesh with the gear elements are presented.

2004 ◽  
Vol 127 (4) ◽  
pp. 646-655 ◽  
Author(s):  
Vilmos Simon

A method for the determination of optimal tooth modifications in hypoid gears based on improved load distribution and reduced transmission errors is presented. The modifications are introduced into the pinion tooth surface by using a cutter with bicircular profile and optimal diameter. In the optimization of tool parameters the influence of shaft misalignments of the mating members is included. As the result of these modifications a point contact of the meshed teeth surfaces appears instead of line contact; the hypoid gear pair becomes mismatched. By using the method presented in (Simon, V., 2000, “Load Distribution in Hypoid Gears,” ASME J. Mech. Des., 122, pp. 529–535) the influence of tooth modifications introduced on tooth contact and transmission errors is investigated. Based on the results that was obtained the radii and position of circular tool profile arcs and the diameter of the cutter for pinion teeth generation were optimized. By applying the optimal tool parameters, the maximum tooth contact pressure is reduced by 16.22% and the angular position error of the driven gear by 178.72%, in regard to the hypoid gear pair with a pinion manufactured by a cutter of straight-sided profile and of diameter determined by the commonly used methods.


Author(s):  
Vilmos V. Simon

A method for the determination of optimal tooth modifications in hypoid gears based on improved load distribution and reduced transmission errors is presented. The modifications are introduced into the pinion tooth surface by using a cutter with bicircular profile and by changing the cutter diameter. In the optimization of tool parameters the influence of shaft misalignments of the mating members is included. As the result of these modifications a point contact of the meshed teeth surfaces appears instead of line contact; the hypoid gear pair becomes mismatched. By using the method presented in [1] the influence of tooth modifications introduced on tooth contact and transmission errors is investigated. Based on the results that was obtained the radii and position of circular tool profile arcs and the cutter diameter for pinion teeth generation were optimized. By applying the optimal tool parameters, the maximum tooth contact pressure is reduced by 16.22% and the angular position error of the driven gear by 178.72%, in regard to the hypoid gear pair with a pinion manufactured by a cutter of straight-sided profile and of diameter determined by the commonly used methods.


Author(s):  
Chia-Ching Lin ◽  
Yawen Wang ◽  
Teik C. Lim ◽  
Weiqing Zhang

Abstract Hypoid gears are widely used to transmit torque on cross axis shafts in a vehicle rear axle system. The dynamic responses of these hypoid geared rotor system have a significant effect on the performance of noise, vibration, and harshness (NVH) for the vehicle design. From past studies, the main source of excitation for this vibration energy comes from hypoid gear transmission error (TE). Thus, the design of hypoid gear pair with minimization of TE is one way to control the dynamic behavior of the vehicle axle system. In this paper, an approach to obtain minimum TE and improved dynamic response with optimal machine tool setting parameters for manufacturing hypoid gears is discussed. A neural network, named Feed-Forward Back Propagation (FFBP), with Particle Swarm Optimization (PSO) and Gradient Descent (GD) training algorithms are used to predict the TE. With the optimal machine tool setting parameters, a 14 degrees of freedom geared rotor system analysis is performed to verify the improvement on dynamic response aiming at minimizing the TE. A case study of a hypoid gear pair with specified design parameters and working condition is presented to validate the proposed method. The results conclude that minimization of TE, the main excitation of vehicle axle gear whine noise and vibration, with optimal machine tool setting parameters can improve the overall dynamic response. The proposed approach provides a better understanding of an optimal design hypoid gear set to minimize TE and effect on vehicle axle system dynamics.


2006 ◽  
Vol 129 (12) ◽  
pp. 1294-1302 ◽  
Author(s):  
Yi-Pei Shih ◽  
Zhang-Hua Fong

The fundamental design of spiral bevel and hypoid gears is usually based on a local synthesis and a tooth contact analysis of the gear drive. Recently, however, several flank modification methodologies have been developed to reduce running noise and avoid edge contact in gear making, including modulation of tooth surfaces under predesigned transmission errors. This paper proposes such a flank modification methodology for face-hobbing spiral bevel and hypoid gears based on the ease-off topography of the gear drive. First, the established mathematical model of a universal face-hobbing hypoid gear generator is applied to investigate the ease-off deviations of the design parameters—including cutter parameters, machine settings, and the polynomial coefficients of the auxiliary flank modification motion. Subsequently, linear regression is used to modify the tooth flanks of a gear pair to approximate the optimum ease-off topography suggested by experience. The proposed method is then illustrated using a numerical example of a face-hobbing hypoid gear pair from Oerlikon’s Spiroflex cutting system. This proposed flank modification methodology can be used as a basis for developing a general technique of flank modification for similar types of gears.


1971 ◽  
Vol 93 (4) ◽  
pp. 1275-1279
Author(s):  
I. M. Daniel

A three-dimensional photoelastic analysis using the stress-freezing and slicing techniques was conducted to obtain stress and load distributions in a hypoid gear pair. Precise full-scale plastic models of a gear and pinion were manufactured. A special mounting fixture was designed and built of the same photoelastic plastic as that used for the model. A set-up gage was also designed and manufactured for gaging the gear and pinion settings. Fine adjustments were made by means of shims. The desired contact, calculated to produce maximum fillet stresses, was checked with a marking compound and gaged with a stock-dividing gage. A loading device was used to apply pure torque to the pinion. The assembled model was loaded and taken through the stress-freezing cycle. Subsequently, the teeth under engagement were sliced and analyzed to obtain contact and fillet stress distributions.


Author(s):  
Norio Ito ◽  
Koichi Takahashi

Abstract In this paper, the relationships between the conjugate tooth surfaces of hypoid gears and the formal tooth bearing pattern are presented. First, we introduce the tooth surface elements necessary for the tooth bearing. Next, the tooth bearing pattern, which changes according to the generating condition of the pinion, is introduced. The hypoid gear pair is a formate gear and the pinion generated to run with such a gear. The conventional method for analyzing the tooth bearing pattern has been developed by the motion of generation between second-order tooth surfaces. In this paper, the tooth surface is expressed by the original third-order tooth surface, and the tooth bearing pattern is analyzed by the meshing motion of the tooth surface. The tooth bearing pattern obtained from such an analytical method becomes the formal tooth bearing. Therefore, the machine settings for accurate gear cutting become possible, and the desired tooth bearing pattern can be obtained beforehand without a trial cutting.


2011 ◽  
Vol 133 (12) ◽  
Author(s):  
Vilmos V. Simon

In this study, polynomial functions of orders up to five are applied to induce variations in the cradle radial setting and the velocity ratio in the kinematic scheme of the machine tool for the generation of the pinion tooth surfaces corresponding to reduced transmission error amplitudes of a hypoid gear pair. The new CNC hypoid generators have made it possible to perform this nonlinear correction motions for the cutting of the face-milled hypoid gears. An algorithm is developed for the execution of motions on the CNC hypoid generator for the generation of face-milled hypoid gear tooth surface, based on the machine tool setting variation on the cradle-type hypoid generator induced by the optimal polynomial functions up to fifth-order. By using the corresponding computer program, the motion graphs of the CNC hypoid generator are determined for the generation of hypoid gear tooth surface, based on the optimal variation in the velocity ratio in the kinematic scheme and on the variation in the cradle radial setting on a cradle-type generator. The results presented indicate that the variation of the velocity ratio in the kinematic scheme of the hypoid generator induced by a fifth-order polynomial function resulted in a 62% reduction of the maximum transmission error of the gear pair.


2014 ◽  
Vol 608-609 ◽  
pp. 77-80
Author(s):  
Li Mei Wang

Based on NC machining principle of hypoid gears and NC machining with high efficiency quality, This paper discusses the feasibility of the hypoid gear processing, establishes the mathematical model of face gear wheel hypoid milling machining adjustment, that will be take the basic data into vertical machining center machine tool. Through analyze the principle of the oscillating tooth face gear transmission, and compared the structure differences between face gear and bevel gear, and the realization processing method of face gear is discussed by improving the bevel gear shaper.


Author(s):  
Claude Gosselin ◽  
Jack Masseth ◽  
Wei Liang

In the manufacturing of spiral-bevel and hypoid gears, circular cutter dimensions are usually based on the desired performance of a gear set. In large manufacturing operations, where several hundred gear geometries may have been cut over the years, the necessary cutter inventory may become quite large since the cutter diameters will differ from one geometry to another, which results in used storage space and associated costs in purchasing and maintaining the cutter parts. Interchangeability of cutters is therefore of significant interest to reduce cost while maintaining approved tooth geometries. An algorithm is presented which allows the use of a different cutter, either in diameter and/or pressure angle, to obtain the same tooth flank surface topography. A test case is presented to illustrate the usefulness of the method: the OB cutter diameter of an hypoid pinion is changed from 8.9500" to 9.1000". CMM results and the comparison of the bearing patterns before and after change show excellent correlation, and indicate that the new pinion can be used in place of the original pinion without performance or quality problems. Significant cost reductions may be obtained with the application of the method.


Sign in / Sign up

Export Citation Format

Share Document