Optimization of Machine Tool Settings on Hypoid Gear Dynamics

Author(s):  
Chia-Ching Lin ◽  
Yawen Wang ◽  
Teik C. Lim ◽  
Weiqing Zhang

Abstract Hypoid gears are widely used to transmit torque on cross axis shafts in a vehicle rear axle system. The dynamic responses of these hypoid geared rotor system have a significant effect on the performance of noise, vibration, and harshness (NVH) for the vehicle design. From past studies, the main source of excitation for this vibration energy comes from hypoid gear transmission error (TE). Thus, the design of hypoid gear pair with minimization of TE is one way to control the dynamic behavior of the vehicle axle system. In this paper, an approach to obtain minimum TE and improved dynamic response with optimal machine tool setting parameters for manufacturing hypoid gears is discussed. A neural network, named Feed-Forward Back Propagation (FFBP), with Particle Swarm Optimization (PSO) and Gradient Descent (GD) training algorithms are used to predict the TE. With the optimal machine tool setting parameters, a 14 degrees of freedom geared rotor system analysis is performed to verify the improvement on dynamic response aiming at minimizing the TE. A case study of a hypoid gear pair with specified design parameters and working condition is presented to validate the proposed method. The results conclude that minimization of TE, the main excitation of vehicle axle gear whine noise and vibration, with optimal machine tool setting parameters can improve the overall dynamic response. The proposed approach provides a better understanding of an optimal design hypoid gear set to minimize TE and effect on vehicle axle system dynamics.

2006 ◽  
Vol 129 (12) ◽  
pp. 1294-1302 ◽  
Author(s):  
Yi-Pei Shih ◽  
Zhang-Hua Fong

The fundamental design of spiral bevel and hypoid gears is usually based on a local synthesis and a tooth contact analysis of the gear drive. Recently, however, several flank modification methodologies have been developed to reduce running noise and avoid edge contact in gear making, including modulation of tooth surfaces under predesigned transmission errors. This paper proposes such a flank modification methodology for face-hobbing spiral bevel and hypoid gears based on the ease-off topography of the gear drive. First, the established mathematical model of a universal face-hobbing hypoid gear generator is applied to investigate the ease-off deviations of the design parameters—including cutter parameters, machine settings, and the polynomial coefficients of the auxiliary flank modification motion. Subsequently, linear regression is used to modify the tooth flanks of a gear pair to approximate the optimum ease-off topography suggested by experience. The proposed method is then illustrated using a numerical example of a face-hobbing hypoid gear pair from Oerlikon’s Spiroflex cutting system. This proposed flank modification methodology can be used as a basis for developing a general technique of flank modification for similar types of gears.


Author(s):  
Vilmos V. Simon

Abstract A method for the determination of optimal machine tool setting for manufacturing modified (mismatched) hypoid gears based on improved load distribution and reduced transmission errors is presented. The applied load distribution calculation is based on the conditions that the total angular position errors of the gear teeth being instantaneously in contact under load must be the same, and along the contact line of every tooth pair instantaneously in contact, the composite displacements of tooth surface points — as the sums of tooth deformations, geometrical surface separations, gear body bending and torsion, deflections of the supporting shafts, misalignments, and composite tooth errors — should correspond to the angular position of the gear. The tooth defonnations consists of the bending and shearing deflections of gear teeth and of the local contact deformations of the mating surfaces. The tooth deflections are calculated by the finite element method. As the equations governing the load sharing and load distribution are nonlinear, an approximate and iterative technique is used to solve this system of equations. The method is implemented by a computer program. Using the program that was developed the influence of machine tool setting parameters for pinion manufacture on maximum tooth contact pressure, load distribution factor, and transmission errors is investigated. By successively choosing the optimal value for every machine tool setting parameter, and by applying the optimal set of these parameters, the maximum tooth contact pressure is reduced by 5.8%, the load distribution factor by 5.9%, and the angular position error of the driven gear by 65.4%, in regard to the hypoid gear pair manufactured by the machine tool setting determined by the commonly used method.


2000 ◽  
Vol 123 (4) ◽  
pp. 577-582 ◽  
Author(s):  
Vilmos Simon

A method for the determination of optimal machine tool setting for manufacturing modified (mismatched) hypoid gears based on improved load distribution and reduced transmission errors is presented. The applied load distribution calculation is based on the conditions that the total angular position errors of the gear teeth being instantaneously in contact under load must be the same, and along the contact line of every tooth pair instantaneously in contact, the composite displacements of tooth surface points—as the sums of tooth deformations, geometrical surface separations, gear body bending and torsion, deflections of the supporting shafts, misalignments, and composite tooth errors—should correspond to the angular position of the gear. The tooth deformations consists of the bending and shearing deflections of gear teeth and of the local contact deformations of the mating surfaces. The tooth deflections are calculated by the finite element method. As the equations governing the load sharing and load distribution are nonlinear, an approximate and iterative technique is used to solve this system of equations. The method is implemented by a computer program. Using the program that was developed the influence of machine tool setting parameters for pinion manufacture on maximum tooth contact pressure, load distribution factor, and transmission errors is investigated. By successively choosing the optimal value for every machine tool setting parameter, and by applying the optimal set of these parameters, the maximum tooth contact pressure is reduced by 5.8%, the load distribution factor by 5.9%, and the angular position error of the driven gear by 65.4%, in regard to the hypoid gear pair manufactured by the machine tool setting determined by the commonly used method.


2004 ◽  
Vol 127 (4) ◽  
pp. 646-655 ◽  
Author(s):  
Vilmos Simon

A method for the determination of optimal tooth modifications in hypoid gears based on improved load distribution and reduced transmission errors is presented. The modifications are introduced into the pinion tooth surface by using a cutter with bicircular profile and optimal diameter. In the optimization of tool parameters the influence of shaft misalignments of the mating members is included. As the result of these modifications a point contact of the meshed teeth surfaces appears instead of line contact; the hypoid gear pair becomes mismatched. By using the method presented in (Simon, V., 2000, “Load Distribution in Hypoid Gears,” ASME J. Mech. Des., 122, pp. 529–535) the influence of tooth modifications introduced on tooth contact and transmission errors is investigated. Based on the results that was obtained the radii and position of circular tool profile arcs and the diameter of the cutter for pinion teeth generation were optimized. By applying the optimal tool parameters, the maximum tooth contact pressure is reduced by 16.22% and the angular position error of the driven gear by 178.72%, in regard to the hypoid gear pair with a pinion manufactured by a cutter of straight-sided profile and of diameter determined by the commonly used methods.


Author(s):  
Vilmos V Simon

A new method is presented for advanced manufacture of hypoid gears on numerical controlled machine tool. The tool geometry and machine tool settings are determined to introduce the optimal tooth modifications into the teeth of hypoid gears. The goal is to reduce the maximum tooth contact stresses, angular displacement error of the driven gear, and energy losses in the oil film existing between tooth surfaces. The calculation is based on the optimal variation of machine tool settings on the classical machine tool for hypoid gear manufacture. The novelty of the method is that during the machining process of teeth surfaces, the variation of machine tool settings on the cradle-type hypoid generator is conducted by polynomial functions of fifth-order. By an algorithm, this variation of machine tool settings is transferred to the numerical controlled machine tool for hypoid gear manufacture (hypoid generator). The obtained results have shown that by applying the optimal manufacture process, considerable reductions in tooth contact stresses and angular displacement errors of the driven gear, and a moderate reduction in energy losses were obtained. Therefore, by applying this new method in practice, advanced manufacture of hypoid gears on CNC hypoid generator is made possible, resulting improved operating characteristics of the hypoid gear pair.


Author(s):  
Vilmos V. Simon

A method for the determination of optimal tooth modifications in hypoid gears based on improved load distribution and reduced transmission errors is presented. The modifications are introduced into the pinion tooth surface by using a cutter with bicircular profile and by changing the cutter diameter. In the optimization of tool parameters the influence of shaft misalignments of the mating members is included. As the result of these modifications a point contact of the meshed teeth surfaces appears instead of line contact; the hypoid gear pair becomes mismatched. By using the method presented in [1] the influence of tooth modifications introduced on tooth contact and transmission errors is investigated. Based on the results that was obtained the radii and position of circular tool profile arcs and the cutter diameter for pinion teeth generation were optimized. By applying the optimal tool parameters, the maximum tooth contact pressure is reduced by 16.22% and the angular position error of the driven gear by 178.72%, in regard to the hypoid gear pair with a pinion manufactured by a cutter of straight-sided profile and of diameter determined by the commonly used methods.


1971 ◽  
Vol 93 (4) ◽  
pp. 1275-1279
Author(s):  
I. M. Daniel

A three-dimensional photoelastic analysis using the stress-freezing and slicing techniques was conducted to obtain stress and load distributions in a hypoid gear pair. Precise full-scale plastic models of a gear and pinion were manufactured. A special mounting fixture was designed and built of the same photoelastic plastic as that used for the model. A set-up gage was also designed and manufactured for gaging the gear and pinion settings. Fine adjustments were made by means of shims. The desired contact, calculated to produce maximum fillet stresses, was checked with a marking compound and gaged with a stock-dividing gage. A loading device was used to apply pure torque to the pinion. The assembled model was loaded and taken through the stress-freezing cycle. Subsequently, the teeth under engagement were sliced and analyzed to obtain contact and fillet stress distributions.


Author(s):  
Shouli Sun ◽  
Shilong Wang ◽  
Yawen Wang ◽  
Teik C. Lim ◽  
Baocang Zhou ◽  
...  

Hypoid gears are effectively used in cross axis power transmission systems. Design of hypoid gear parameters is complex and dependent on designers’ experiences. In this paper, an easy approach to design the parameters of hypoid gear to obtain the minimum of maximum principle normal contact stress and peak to peak transmission error is presented. An improved Particle Swarm Optimization (PSO) and Back Propagation (BP) algorithm is proposed to predict the stress and the transmission error if certain design parameters are given. The predictive accuracy is evaluated by Root Mean Square Error (RMSE) equation. The results show that the predictive accuracy is in reasonable agreement with the values calculated by the software [1]. Based on the prediction model, the optimization model for the design parameters of hypoid gear is established. This paper proposes a method to design a set of hypoid gears with minimum of maximum principle normal stress and peak to peak transmission error.


Sign in / Sign up

Export Citation Format

Share Document