A Human-Inspired Method for Mobile Robot Navigation

Author(s):  
Fatemeh Heidari ◽  
Reza Fotouhi

A new method for real-time navigation of mobile robots in complex and mostly unstructured environment is presented. This novel human-inspired method (HIM) uses distance-based sensory data from a laser range finder for real-time navigation of a wheeled mobile robot in unknown and cluttered settings. The approach requires no prior knowledge from the environment and is easy to be implemented for real-time navigation of mobile robots. HIM endows the robot a human-like ability for reasoning about the situations to reach a predefined goal point while avoiding static and moving or unforeseen obstacles; this makes the proposed strategy efficient and effective. Results indicate that HIM is capable of creating smooth (no oscillations) paths for safely navigating the mobile robot, and coping with fluctuating and imprecise sensory data from uncertain environment. HIM specifies the best path ahead, according to the situation of encountered obstacles, preventing the robot to get trapped in deadlock and impassable conditions. This deadlock detection and avoidance is a significant ability of HIM. Also, this algorithm is designed to analyze the environment for detecting both negative and positive obstacles in off-road terrain. The simulation and experimental results of HIM is compared with a fuzzy logic based (FLB) approach.

1990 ◽  
Vol 2 (1) ◽  
pp. 35 ◽  
Author(s):  
R.A. Lotufo ◽  
A.D. Morgan ◽  
E.L. Dagless ◽  
D.J. Milford ◽  
J.F. Morrissey ◽  
...  

2017 ◽  
Vol 2017 (9) ◽  
pp. 10-15 ◽  
Author(s):  
Soonhac Hong ◽  
Ming Li ◽  
Miao Liao ◽  
Peter van Beek

Author(s):  
Lee Gim Hee ◽  
Marcelo H. Ang Jr.

The development of autonomous mobile robots is continuously gaining importance particularly in the military for surveillance as well as in industry for inspection and material handling tasks. Another emerging market with enormous potential is mobile robots for entertainment. A fundamental requirement for autonomous mobile robots in most of its applications is the ability to navigate from a point of origin to a given goal. The mobile robot must be able to generate a collision-free path that connects the point of origin and the given goal. Some of the key algorithms for mobile robot navigation will be discussed in this article.


2017 ◽  
Vol 8 (2) ◽  
pp. 854-859
Author(s):  
M. Saiful Azimi ◽  
Z. A. Shukri ◽  
M. Zaharuddin

The difficulties of transporting heavy mobile robots limit robotic experiments in agriculture. Virtual reality however, offers an alternative to conduct experiments in agriculture. This paper presents an application of virtual reality in a robot navigational experiment using SolidWorks and simulated into MATLAB. Trajectories were initiated using Probabilistic Roadmap and compared based on travel time, distance and tracking error, and the efficiency was calculated. The simulation results showed that the proposed method was able to conduct the navigational experiment inside the virtual environment. U-turn trajectory was chosen as the best trajectory for crop inspection with 82.7% efficiency.


Sign in / Sign up

Export Citation Format

Share Document