Designettes: New Approaches to Multidisciplinary Engineering Design Education

Author(s):  
Cassandra Telenko ◽  
Bradley Camburn ◽  
Katja Hölttä-Otto ◽  
Kristin Wood ◽  
Kevin Otto

Teaching of design and other fundamental topics in engineering is often isolated to dedicated courses. Thus, an opportunity is missed to foster a culture of engineering design and multidisciplinary problem solving throughout the curriculum. Designettes, defined as brief, vignette-like design challenges, exploit opportunities to integrate design learning experiences in class, across courses, across terms, and across disciplines. When courses join together in a designette, a multidisciplinary learning activity occurs, demonstrating how different subjects are integrated and applied to open-ended problems and grand challenges. Designettes help foster a culture of design, and enables the introduction of multidisciplinary design challenges across all core courses in each semester. These challenges combine problem clarification, concept generation and prototyping with subject content from curricula such as biology, thermodynamics, differential equations, and software with controls. This paper investigates the use of single and multidisciplinary designettes at SUTD. From pre- and post-surveys of junior college students, designettes were found to increase students’ awareness of applications and learning of content. From 321 third-semester students across six cohorts, designettes were found to increase students’ self-perceptions of their ability to solve multidisciplinary problems.

2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Cassandra Telenko ◽  
Kristin Wood ◽  
Kevin Otto ◽  
Mohan Rajesh Elara ◽  
Shaohui Foong ◽  
...  

Design and other fundamental topics in engineering are often isolated to dedicated courses. An opportunity exists to foster a culture of engineering design and multidisciplinary problem solving throughout the curriculum. Designettes, charettelike design challenges, are rapid and creative learning tools that enable educators to integrate design learning in a single class, across courses, across terms, and across disciplines. When two or more courses join together in a designette, a multidisciplinary learning activity occurs; multiple subjects are integrated and applied to open-ended problems and grand challenges. This practice helps foster a culture of design, and enables the introduction of multidisciplinary design challenges. Studies at the Singapore University of Technology and Design (SUTD) demonstrate learning of engineering subject matter in a bio-inspired robotics designette (MechAnimal), an interactive musical circuit designette, and an automated milk delivery (AutoMilk) designette. Each challenge combines problem clarification, concept generation, and prototyping with subject content such as circuits, biology, thermodynamics, differential equations, or software with controls. From pre- and postsurveys of students, designettes are found to increase students' understanding of engineering concepts. From 321 third-semester students, designettes were found to increase students' perceptions of their ability to solve multidisciplinary problems.


Author(s):  
Vance D. Browne

Abstract The process by which new products are brought to market — the product realization process, or PRP — can be introduced in engineering design education. In industry, the PRP has been evolving to concurrent engineering and product teams. The PRP includes components such as concept generation, analysis, manufacturing process development and customer interaction. Also, it involves the sequencing of the components and their connections which includes teamwork, project planning, meetings, reports and presentations. A capstone senior engineering project, along with classroom lectures and presentations can be structured to provide knowledge and experience to the students in many of the PRP components and the connections. This paper will give an overview of the PRP and a project/lecture structure at the author’s university. The instructor recently joined the academic ranks after years in industry with responsibility for directing product development and R&D and for leading product development teams.


Author(s):  
Swapnil Sinha ◽  
Hong-En Chen ◽  
Nicholas A. Meisel ◽  
Scarlett R. Miller

Designing for manufacturing encourages designers to tailor products for manufacturing constraints, assembly requirements, and limited resources. The additive manufacturing (AM) process challenges traditional manufacturing constraints by building material layer-by-layer, providing opportunities for increased complexity, mass customization, multifunctional embedding, and multi-material production, which were previously difficult with traditional manufacturing (TM) processes. With its application as an effective prototyping and manufacturing tool, AM is prevailing in the educational and industrial engineering design process. For proper utilization of the potential it offers, AM has created a need for an effective Designing for AM (DfAM) curriculum. This exploratory study examines how current formal education on DfAM considerations influence creative concept generation as compared to designing for TM (DfTM). A design study was conducted in two different classrooms, one with and one without formal training in DfAM. It was found that the ideas generated for AM on average were significantly more elegant than the ideas generated for TM. On the other hand, ideas generated for TM scored higher than AM in feasibility. These results indicate that AM significantly aids in generating aesthetically appealing ideas, but not necessarily in the generation of feasible ideas, compared to TM. We use these findings to provide recommendations for design education.


Author(s):  
Jonathan Sauder ◽  
Yan Jin

Students are frequently trained in a variety of methodologies to promote their creativity in the collaborative environment. Some of the training and methods work well, while others present challenges. A collaborative stimulation approach is taken to extend creative cognition to collaborative creativity, providing new insights into design methodologies and training. An experiment using retrospective protocol analysis, originally conducted to identify the various types of collaborative stimulation, revealed how diversity of past creative experiences correlates with collaborative stimulation. This finding aligns with previous research. Unfortunately, many current engineering design education programs do not adequately provide opportunities for diverse creative experiences. As this study and other research has found, there is a need to create courses in engineering design programs which encourage participation in diverse creative activities.


Author(s):  
Warren F. Smith

The “Warman Design and Build Competition”, running across Australasian Universities, is now in its 26th year in 2013. Presented in this paper is a brief history of the competition, documenting the objectives, yearly scenarios, key contributors and champion Universities since its beginning in 1988. Assuming the competition has reached the majority of mechanical and related discipline engineering students in that time, it is fair to say that this competition, as a vehicle of the National Committee on Engineering Design, has served to shape Australasian engineering education in an enduring way. The philosophy of the Warman Design and Build Competition and some of the challenges of running it are described in this perspective by its coordinator since 2003. In particular, the need is for the competition to work effectively across a wide range of student group ability. Not every group engaging with the competition will be competitive nationally, yet all should learn positively from the experience. Reported also in this paper is the collective feedback from the campus organizers in respect to their use of the competition as an educational experience in their classrooms. Each University participating uses the competition differently with respect to student assessment and the support students receive. However, all academic campus organizer responses suggest that the competition supports their own and their institutional learning objectives very well. While the project scenarios have varied widely over the years, the intent to challenge 2nd year university (predominantly mechanical) engineering students with an open-ended statement of requirements in a practical and experiential exercise has been a constant. Students are faced with understanding their opportunity and their client’s value system as expressed in a scoring algorithm. They are required to conceive, construct and demonstrate their device with limited prior knowledge and experience, and the learning outcomes clearly impact their appreciation for teamwork, leadership and product realization.


Sign in / Sign up

Export Citation Format

Share Document