MR Based Brake-by-Wire System With Self-Energizing and Brake Energy Harvesting Capability

Author(s):  
Liangyao Yu ◽  
Xuhui Liu ◽  
Liangxu Ma ◽  
Lei Zuo ◽  
Jian Song

Brake-by-wire system is a more compact, more efficient brake system using electromechanical actuators instead of conventional hydraulic actuators. Magneto-rheological (MR) fluid is widely used in damping control due to its outstanding controllable properties. In this paper, an MR based Brake-by-wire system with self-energizing and brake energy harvesting capability was proposed and designed. It combined a typical single-disk-type MR brake with a wedge mechanism for self-energizing purpose, and a generator is employed to conduct regenerative braking and harvest brake energy. The MR brake and generator are located at the inner side of the wheel rim and coupled by compact linkage and axle mechanism. According to the torque analysis of the proposed MR brake, the brake torque was significantly amplified, which means MR fluid can be applied in automotive Brake-by-Wire system with less power consumption. Meanwhile, about 46W output power of the generator can be achieved when braking at an initial vehicle speed of 50km/h. Using a DC/DC convertor, the output power can be used to power the MR brake control circuit or other in-vehicle electronic devices, or charge the on-board low-voltage battery. Simulation results are given according to the proposed design.

2014 ◽  
Vol 936 ◽  
pp. 2087-2093
Author(s):  
Xu Hui Liu ◽  
Liang Yao Yu ◽  
Liang Xu Ma

Brake-by-wire system is a new concept of brake system using electromechanical actuators instead of conventional hydraulic actuators. It is more compact, more efficient and responses faster than traditional brake systems. Magneto-rheological (MR) fluid is widely used due to its outstanding properties. In this paper, an MR based Brake-by-wire system with self-energizing capability were proposed and designed. It combined a typical single-disk-type MR brake with a wedge mechanism for self-energizing purpose. According to the torque analysis of the proposed MR brakes, the brake torque was significantly amplified. This research work presented a promising brake actuator, which allows MR fluids to be applied in automotive Brake-by-wire systems.


2020 ◽  
Vol 10 (7) ◽  
pp. 2484 ◽  
Author(s):  
Marcin Kulik ◽  
Mariusz Jagieła ◽  
Marian Łukaniszyn

The coreless microgenerators implemented in electromagnetic vibration energy harvesting devices usually suffer from power deficiency. This can be noticeably improved by optimizing the distribution of separate turns within the armature winding. The purposeful optimization routine developed in this work is based on numerical identification of the turns that contribute most to the electromotive force and the elimination of those with the least contribution in order to reduce the internal impedance of the winding. The associated mixed integer nonlinear programming problem is solved comparatively using three approaches employing surrogate models based on kriging. The results show very good performance of the strategy based on a sequentially refined kriging in terms of the ability to accurately localize extremum and reduction of the algorithm execution time. As a result of optimization, the output power of the system increased by some 300 percent with respect to the initial configuration.


2014 ◽  
Vol 592-594 ◽  
pp. 2254-2260
Author(s):  
J. Thanikachalam ◽  
G.S. Jinu ◽  
P. Nagaraj

Magneto-rheological fluids are smart fluids displaying flow properties that can be adjusted by the introduction of magnetic fields. Conventional brakes require complex mechanical parts to dissipate energy, they are having more weight, produce less braking torque and the time of response is about 300-500 milliseconds and hence brake distance is high. A Magneto-rheological fluid brake is efficient than conventional braking system in terms of the weight reduction, and response time. In this paper MR fluid is prepard and an improved MRB design is made, taking into account the temperature effects and more accurate description of the material properties as well. The proposed work is concerned with the development of a new Brake-by-wire system which employs MRF as working medium. The design procedure comprises the selection of materials for MRB, creating an analytical model for finding the braking torque produced by the MRB and Finite Element Analysis of the MRB.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 439-446
Author(s):  
Gildas Diguet ◽  
Gael Sebald ◽  
Masami Nakano ◽  
Mickaël Lallart ◽  
Jean-Yves Cavaillé

Magneto Rheological Elastomers (MREs) are composite materials based on an elastomer filled by magnetic particles. Anisotropic MRE can be easily manufactured by curing the material under homogeneous magnetic field which creates column of particles. The magnetic and elastic properties are actually coupled making these MREs suitable for energy conversion. From these remarkable properties, an energy harvesting device is considered through the application of a DC bias magnetic induction on two MREs as a metal piece is applying an AC shear strain on them. Such strain therefore changes the permeabilities of the elastomers, hence generating an AC magnetic induction which can be converted into AC electrical signal with the help of a coil. The device is simulated with a Finite Element Method software to examine the effect of the MRE parameters, the DC bias magnetic induction and applied shear strain (amplitude and frequency) on the resulting electrical signal.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 366
Author(s):  
Yang Xia ◽  
Yun Tian ◽  
Lanbin Zhang ◽  
Zhihao Ma ◽  
Huliang Dai ◽  
...  

We present an optimized flutter-driven triboelectric nanogenerator (TENG) for wind energy harvesting. The vibration and power generation characteristics of this TENG are investigated in detail, and a low cut-in wind speed of 3.4 m/s is achieved. It is found that the air speed, the thickness and length of the membrane, and the distance between the electrode plates mainly determine the PTFE membrane’s vibration behavior and the performance of TENG. With the optimized value of the thickness and length of the membrane and the distance of the electrode plates, the peak open-circuit voltage and output power of TENG reach 297 V and 0.46 mW at a wind speed of 10 m/s. The energy generated by TENG can directly light up dozens of LEDs and keep a digital watch running continuously by charging a capacitor of 100 μF at a wind speed of 8 m/s.


Author(s):  
Alok Ranjan Biswal ◽  
Tarapada Roy ◽  
Rabindra Kumar Behera

The current article deals with finite element (FE)- and genetic algorithm (GA)-based vibration energy harvesting from a tapered piezolaminated cantilever beam. Euler–Bernoulli beam theory is used for modeling the various cross sections of the beam. The governing equation of motion is derived by using the Hamilton's principle. Two noded beam elements with two degrees of freedom at each node have been considered in order to solve the governing equation. The effect of structural damping has also been incorporated in the FE model. An electric interface is assumed to be connected to measure the voltage and output power in piezoelectric patch due to charge accumulation caused by vibration. The effects of taper (both in the width and height directions) on output power for three cases of shape variation (such as linear, parabolic and cubic) along with frequency and voltage are analyzed. A real-coded genetic algorithm-based constrained (such as ultimate stress and breakdown voltage) optimization technique has been formulated to determine the best possible design variables for optimal harvesting power. A comparative study is also carried out for output power by varying the cross section of the beam, and genetic algorithm-based optimization scheme shows the better results than that of available conventional trial and error methods.


2013 ◽  
Vol 336-338 ◽  
pp. 734-737
Author(s):  
Hong Yu Zheng ◽  
Ya Ning Han ◽  
Chang Fu Zong

In order to solve the problem of road feel feedback of vehicle steer-by-wire (SBW) system based on joystick, a road feel control strategy was established to analyze the road feel theory of traditional steer system, which included return, assist and damp control module. By verifying the computer simulation results with the control strategy from software of CarSim and Matlab/Simulink, it shows that the proposed strategy can effective get road feel in different vehicle speed conditions and could improve the vehicle maneuverability to achieve desired steering feel by different drivers.


Author(s):  
Serena Gagliardi ◽  
Xiong Li ◽  
Matteo Zoppi ◽  
Luis de Leonardo ◽  
Rezia Molfino

Driven by the trend of life-cycle design and sustainable production, an innovative project called self-reconfigurable intelligent swarm fixtures (SwarmItFIX) funded by the European Commission is being developed. The project investigates the application of robotic multi agent fixtures for the support of automotive and airplane body panels during their manufacturing and assembly processes. This paper addresses the exploration and development of the adaptable heads, which are the end-effector of the intelligent fixture. The head is able to adapt to the shape of the workpiece and freeze its shape after adaptation to provide stable support. Two kinds of head designs are discussed. The first design uses the pseudo-phase-change properties of a volume of bulk grains (metal sand) which can be clustered using a hydrostatic pressure to conform to a given workpiece shape. The second design investigated uses phase-change magneto-rheological (MR) fluid in a network of channels to allow and block the motion of a crown of miniature pistons. The initial experiments are carried out and their results show the effectiveness of the design.


Sign in / Sign up

Export Citation Format

Share Document