mr fluid damper
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 1)

H-INDEX

14
(FIVE YEARS 0)

2021 ◽  
Vol 11 (1) ◽  
pp. 584-591
Author(s):  
K. D. Saharuddin ◽  
M. H. M. Ariff ◽  
K. Mohmad ◽  
I. Bahiuddin ◽  
Ubaidillah ◽  
...  

Abstract Magnetorheological (MR) fluid is among the smart materials that can change its default properties with the influence of a magnetic field. Typical application of an MR fluid based device involves an adjustable damper which is commercially known as an MR fluid damper. It is used in vibration control as an isolator in vehicles and civil engineering applications. As part of the device development process, proper understanding of the device properties is essential for reliable device performance analysis. This study introduce an accurate and fast prediction model to analyse the dynamic characteristics of the MR fluid damper. This study proposes a new modelling technique called Extreme Learning Machine (ELM) to predict the dynamic behaviour of an MR fluid damper hysteresis loop. This technique was adopted to overcome the limitations of the existing models using Artificial Neural Networks (ANNs). The results indicate that the ELM is extremely faster than ANN, with the capability to produce high accuracy prediction performance. Here, the hysteresis loop, which represents the relationship of force-displacement for the MR fluid damper, was modelled and compared using three different activation functions, namely, sine, sigmoid and hard limit. Based on the results, it was found that the prediction performance of ELM model using the sigmoid activation functions produced highest accuracy, and the lowest Root Mean Square Error (RMSE).



2020 ◽  
Vol 7 ◽  
Author(s):  
Hongtao Zhu ◽  
Xiaoting Rui ◽  
Fufeng Yang ◽  
Wei Zhu ◽  
Junjie Gu

A cab seat suspension with a magneto-rheological (MR) fluid damper is introduced in this paper. A unified-format model for the MR damper is proposed to describe the dynamic characteristics of the MR damper. Also, a simple force-inverse model and a viscous damping tracking model are used for the coil current solution. A digital integrator and an extended Kalman filter are respectively adopted to obtain the vibration velocity of the chair frame and the relative motion velocity of the MR damper piston. A new skyhook control base with viscous damping tracking is applied to the semi-active seat suspension. In the simulation, compared with passive seat suspension under different displacement excitation (2, 4, 6, 8 Hz-sine, and random), the acceleration root mean square of the seat suspension with the MR damper is reduced by 52.2%, 32.2%, 41.3%, 50.8%, and 34.6%, respectively. In the experiment, the acceleration root mean square is reduced by 11.2%, 41.2%, 45.8%, and 31.5%, respectively under different displacement excitation (2, 4, 6, and 8 Hz-sine).



2020 ◽  
Vol 12 (8) ◽  
pp. 168781402095054
Author(s):  
Birhan Abebaw Negash ◽  
Wonhee You ◽  
Jinho Lee ◽  
Kwansup Lee

In this research, novel genetic algorithm (nGA) is proposed for Bouc-Wen modle parameters esstimation for magnetorheological (MR) fluid dampers. The optimization efficiency is improved by modifying the crossover and mutation steps of a GA. In the crossover stage, the probability of reproducing offspring from the same parent (same mother and father chromosome) is done to be zero, which may happen in the standard GA, and the probability of a chromosome to be selected for mating is based on error rank weighting of the chromosomes. Additional fitness evaluation of chromosomes will take place in between the crossover and mutation steps to save the best chromosome found so far, which is not implemented in the standard genetic algorithm (GA). The model is validated by comparing its simulation output force ( Fsim) with experimentally generated MR damper force ( Fexp). The mean absolute error, standard deviation and number of generations for convergence are taken as a criterias for performance evaluation. With these ctriterias, the proposed novel GA outperform better than the other researches. The accuracy is improved by 46.67% compared to standard GA. The proposed novel GA for Bouc-Wen model parameter identification can be used for any MR damper control system with better accuracy.



2019 ◽  
Vol 9 (19) ◽  
pp. 4189 ◽  
Author(s):  
Darson Dezheng Li ◽  
Declan Finn Keogh ◽  
Kevin Huang ◽  
Qing Nian Chan ◽  
Anthony Chun Yin Yuen ◽  
...  

Magnetorheological (MR) fluid is a smart material fabricated by mixing magnetic-responsive particles with non-magnetic-responsive carrier fluids. MR fluid dampers are able to provide rapid and reversible changes to their damping coefficient. To optimize the efficiency and effectiveness of such devices, a computational model is developed and presented where the flow field is simulated using the computational fluid dynamics approach, coupled with the magnetohydrodynamics model. Three different inlet pressure profiles were designed to replicate real loading conditions are examined, namely a constant pressure, a sinusoidal pressure profile, and a pressure profile mimicking the 1994 Northbridge earthquake. When the MR fluid damper was in its off-state, a linear pressure drop between the inlet and the outlet was observed. When a uniform perpendicular external magnetic field was applied to the annular orifice of the MR damper, a significantly larger pressure drop was observed across the annular orifice for all three inlet pressure profiles. It was shown that the fluid velocity within the magnetized annular orifice decreased proportionally with respect to the strength of the applied magnetic field until saturation was reached. Therefore, it was clearly demonstrated that the present model was capable of accurately capturing the damping characteristics of MR fluid dampers.



2019 ◽  
Vol 67 (6) ◽  
pp. 493-507
Author(s):  
Ji-Hwan Shin ◽  
Jin-Ho Lee ◽  
Won-Hee You ◽  
Moon K. Kwak

A semi-active virtual tuned mass damper (SAVTMD) control algorithm is developed to suppress vibrations of a railway vehicle by using magneto-rheological (MR) damper. To this end, a virtual-tuned-mass-damper control algorithm analogous to the tuned mass damper was developed prior to the semi-active application. The proposed SAVTMD control algorithm uses the acceleration of the car body directly, so that it is more practical than the sky-hook control algorithm that uses the velocity of the car body. The application of the SAVTMD control to a real MR fluid damper is discussed, and a step-by-step procedure to calculate the command voltage to the driver of the MR fluid damper is presented. A hardwarein-the-loop simulation system developed in the previous study is used to test the SAVTMD control algorithm. The theoretical and experimental results showed that the proposed SAVTMD control algorithm is more effective than is the semi-active sky-hook control in suppressing vibrations of the car body of the railway vehicle by the MR damper.



2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Zhongkui Zhang ◽  
Feng Gao ◽  
Yan Li ◽  
Han Zhang

Tangential dynamic behaviors of the machine hydrostatic slide with a magnetorheological (MR) fluid damper are studied, and the effect of the MR damper to control the vibration of the hydrostatic slide is discussed. The dynamic model of the hydrostatic slide with the MR damper is established, and the tangential vibration equation of linear and nonlinear is derived. The multidimensional incremental harmonic balance method (MIHBM) with discrete Fourier transform (DFT) is derived by which the nonlinear response and stability of the system are studied. The resonance response of the Duffing equation under the combined action of harmonic excitation and constant excitation is obtained. In order to investigate the vibration response of the hydrostatic slide with the MR damper in detail, the bifurcation diagram, phase diagram, and Poincaré map are given. Finally, the dynamic response of the machine hydrostatic slide with the MR damper is discussed, and it is verified that the MR damper can suppress the tangential vibration of the hydrostatic slide effectively and the constant controller can control the chaotic behavior of the system well.



Author(s):  
S. Siva Kumar ◽  
K.S. Raj Kumar ◽  
Navaneet Kumar

Magnetorheological (MR) fluid damper has been designed, fabricated and tested to find the stiffness and damping characteristics. Experimentally the MR damper has been tested to analyse the behaviour of MR fluid as well as to obtain the stiffness for varying magnetic field. MR damper mathematical model has been developed for evaluating dynamic response for experimentally obtained parameters. The experimental results show that the increase of applied electric current in the MR damper, the damping force will increase remarkably up to the saturation value of current. The numerical simulation results that stiffness of the MR damper can be varied with the current value and increase the damping forces with the reduced amplitude of excitation. Experimental and theoretical results of the MR damper characteristics demonstrate that the developed MR damper can be used for vibration isolation and suppression.





2016 ◽  
Vol 12 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Norin Filip-Vacarescu ◽  
Cristian Vulcu ◽  
Dan Dubina

Abstract This paper discusses the concept of a hybrid damper made from a combination of two dissipative devices. A passive hysteretic device like steel Buckling Restrained Brace (BRB) can be combined with a magneto-rheological (MR) Fluid Damper in order to obtain a hybrid dissipative system. This system can work either as a semi-active system, if the control unit is available, or as a passive system, tuned for working according to performance based seismic engineering (PBSE) scale of reference parameters (i.e. interstory drift).



Sign in / Sign up

Export Citation Format

Share Document