Kinematics Analysis of a Snake Robot Module Using Screw Theory

Author(s):  
Qing Xiao ◽  
Zhengcai Cao ◽  
Jian S. Dai

A natural snake can navigate lots of diverse environments owing to their extreme agility and hyper-redundancy. However, earlier snake robot designs are inadequate to imitate the living snake locomotion comprehensively, since the deficiency of mobility in each single module. The application of parallel mechanism in snake robot can provide considerable dexterity and support-ability to overcome the aforementioned drawback. This paper presents a bionic parallel module for snake robot inspired by the anatomy of biological snake. To generate four distinct gaits of living snake, three motion screws of the mechanism are obtained via mobility analysis. Further, a kinematic model of this mechanism is investigated by reciprocal screw and Lie algebra aimed to evaluate the kinematic performance in an efficient and accurate scheme, which facilitates real-time motion control. Finally, a numerical result using this method is supplied, and its effectiveness is corroborated by kinematic simulation of ADAMS.

2021 ◽  
pp. 1-14
Author(s):  
Wen-ao Cao ◽  
Sheng Xi ◽  
Huafeng Ding ◽  
Ziming Chen

Abstract This paper aims to present the topological structure design and kinematic analysis of a novel double-ring truss deployable satellite antenna mechanism. First, a new topological scheme and a new rectangular prism deployable linkage unit are proposed for constructing the kind of antenna mechanisms. Second, the degree-of-freedom (DOF) of the deployable unit and the antenna mechanism are analyzed based on structure decomposition and screw theory. Third, the kinematic model of the double-ring truss deployable antenna mechanism is established based on its structural characteristics. Finally, a typical numerical example is used to illustrate the effectiveness of the designed mechanism and the established kinematic model. The new double-ring truss deployable antenna mechanism consists of the units with the better structural symmetry, and has simpler joint axis layouts, comparing with the same type of most existing mechanisms.


Author(s):  
Zhen Huang ◽  
Si J. Zhu

This paper presents the kinematic analyses of a 5-DOF 3-RCRR parallel mechanism. The end-effector of this mechanism can rotate round rotation center and one reference point on it can translate in a plane parallels to the base platform. Since the traditional Kutzbach-Gru¨bler formula is not valid for this mechanism, the modified Kutzbach-Gru¨bler formula and screw theory are used in the mobility analysis. The Duffy’s spherical analytic theory is used in forward/reverse position analyses. In forward/reverse velocity/acceleration analyses, virtual mechanism principle is used to build a virtual parallel mechanism (3-PvRCRR), which is equivalent to the initial mechanism (3-RCRR) on kinematics if all rates of virtual pairs (Pv) are set to be zero. At the end, some kinematics curves are presented with a numerical example.


2009 ◽  
Vol 42 (16) ◽  
pp. 699-704 ◽  
Author(s):  
Hiroaki Tsukano ◽  
Motoyasu Tanaka ◽  
Fumitoshi Matsuno

2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Song Gao ◽  
Jihong Chen ◽  
Shusheng Liu ◽  
Xiukun Yuan ◽  
Pengcheng Hu ◽  
...  

Abstract Due to their superior machining quality, efficiency, and availability, five-axis machine tools are important for the manufacturing of complicated parts of freeform surfaces. In this study, a new type of the five-axis machine tool was designed that is composed of four rotary axes as well as one translational axis. Given the structure of the proposed machine tool, an inverse kinematics analysis was conducted analytically, and a set of methods was then proposed to address the issues in the kinematic analysis, e.g., the singularity and multi-solution problems. Compared with traditional five-axis machine tools, which are typically composed of three linear axes and two rotary axes, the proposed machine tool exhibited better kinematic performance with machining parts with hub features, such as impellers, which was validated by simulations and real cuttings.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Wen-ao Cao ◽  
De Zhang ◽  
Huafeng Ding

Abstract This paper presents a novel two-layer and two-loop spatial deployable linkage which can only accurately output vertical straight-line motion. First, the degree-of-freedom (DOF) of the linkage is analyzed based on structure decomposition and screw theory, and the characteristic of the straight-line motion of the linkage is verified by checking the output twist of the end platform. Then, the kinematic model of the mechanism is established based on the conditions of the straight-line motion and the single DOF. Finally, several potentially typical applications of the linkage are exhibited. The straight-line linkage has relatively simple joint layouts and kinematics model and can be used as a deployable unit to construct some special deployable mechanisms.


Author(s):  
Qinchuan Li ◽  
Xudong Hu ◽  
Zhen Huang

This paper presents a method for the Jacobian derivation of 5-DOF 3R2T PMs (parallel mechanisms), where 3R denotes three rotational DOFs (degrees of freedom) and 2T denotes two translational DOFs. First the mobility analysis of such kind of parallel mechanisms is reviewed briefly. The Jacobian matrix of the single limb kinematic chain is obtained via screw theory, which is a 6 × 5 matrix. Then it is shown that the mobility analysis of such kind of PM is important when simplifying the 6 × 5 matrix into a 5 × 5 Jacobian matrix. After obtaining the 5 × 5 Jacobian matrix for each limb, a 5 × 5 Jacobian matrix for the whole mechanism can be established.


Author(s):  
Wenwei Li ◽  
Guangbing Zhou ◽  
Xuefeng Zhou ◽  
Zaili Chen ◽  
Liang Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document