Utilizing Bi-Stability to Improve the Performance of Wake-Galloping Energy Harvesters in Unsteady Flow

Author(s):  
Ali H. Alhadidi ◽  
Mohammed F. Daqaq ◽  
Hamid Abderrahmane

This paper investigates exploiting a bi-stable restoring force to enhance the transduction of wake-galloping energy harvesters in unsteady flows. To that end, a harvester consisting of a piezoelectric cantilever beam augmented with a square-sectioned bluff body at the free end is considered. Two repulsive magnets located at the tip of the beam are used to introduce the bi-stable restoring force. Unsteadiness is generated in a wind tunnel using static-grid structures located in the upstream of the bluff body. Three different mesh screens with square bars are designed with different bar and mesh widths to control the Reynolds numbers and associated unsteadiness. A series of wind tunnel tests are then used to experimentally investigate the response of the harvester with and without the tip magnets. Results demonstrate that the bi-stable restoring force can be used to improve the output power of the harvester under unsteady flow conditions.

Author(s):  
Ali H. Alhadidi ◽  
Mohammed F. Daqaq

This paper investigates utilizing a nonlinear (bi-stable) restoring force to enhance the transduction of galloping energy harvesters in turbulent flows. To that end, a harvester consisting of a piezoelectric cantilever beam augmented with a square-sectioned bluff body at the free end is considered. Two repulsive magnets located at the tip of the beam are used to introduce the bi-stable restoring force. Turbulence is generated in a wind tunnel using static-grid structures located in the upstream of the bluff body. Three different mesh screens with square bars are designed with different bar and mesh widths to control the Reynolds numbers and associated turbulence intensity. A series of wind tunnel tests are then used to experimentally investigate the response of the harvester with and without the tip magnets. Results demonstrate that the bi-stable restoring force can be used to improve the output power of the harvester for sufficiently large turbulence intensities.


Author(s):  
Ali H. Alhadidi ◽  
Amin Bibo ◽  
Mohammed F. Daqaq

This ppppaper examines the performance of a galloping energy harvester possessing a nonlinear restoring force. To achieve this goal, a flow energy harvester consisting of a piezoelectric cantilever beam augmented with a square-sectioned bluff body at the free end is considered. Two magnets located near the tip of the bluff body are used to introduce the nonlinearity which strength and nature can be altered by changing the distance between the magnets. A lumped-parameter aero-electromechanical model adopting the quasi-steady assumption for aerodynamic loading is presented and utilized to numerically simulate the harvester’s response. Wind tunnel tests are also performed to validate the numerical simulations by conducting upward and downward wind velocity sweeps. Results comparing the relative performance of several harvesters with potential functions of different shapes demonstrate that a mono-stable potential function with a hardening restoring force can outperform all other configurations.


1994 ◽  
Vol 277 ◽  
pp. 347-379 ◽  
Author(s):  
Eugene J. Chang ◽  
Martin R. Maxey

A direct numerical simulation, based on spectral methods, has been used to compute the time-dependent, axisymmetric viscous flow past a rigid sphere. An investigation has been made for oscillatory flow about a zero mean for different Reynolds numbers and frequencies. The simulation has been verified for steady flow conditions, and for unsteady flow there is excellent agreement with Stokes flow theory at very low Reynolds numbers. At moderate Reynolds numbers, around 20, there is good general agreement with available experimental data for oscillatory motion. Under steady flow conditions no separation occurs at Reynolds number below 20; however in an oscillatory flow a separation bubble forms on the decelerating portion of each cycle at Reynolds numbers well below this. As the flow accelerates again the bubble detaches and decays, while the formation of a new bubble is inhibited till the flow again decelerates. Steady streaming, observed for high frequencies, is also observed at low frequencies due to the flow separation. The contribution of the pressure to the resultant force on the sphere includes a component that is well described by the usual added-mass term even when there is separation. In a companion paper the flow characteristics for constant acceleration or deceleration are reported.


1993 ◽  
Vol 115 (1) ◽  
pp. 101-109 ◽  
Author(s):  
L. He ◽  
J. D. Denton

A quasi-three-dimensional inviscid-viscous coupled approached has been developed for unsteady flows around oscillating blades, as described in Part 1. To validate this method, calculations for several steady and unsteady flow cases with strong inviscid-viscous interactions are performed, and the results are compared with the corresponding experiments. Calculated results for unsteady flows around a biconvex cascade and a fan tip section highlight the necessity of including viscous effects in predictions of turbomachinery blade flutter at transonic flow conditions.


Author(s):  
L. He ◽  
J. D. Denton

A quasi 3-D inviscid-viscous coupled approach has been developed for unsteady flows around oscillating blades, as described in Part 1. To validate this method, calculations for several steady and unsteady flow cases with strong inviscid-viscous interactions are performed, and the results are compared with the corresponding experiments. Calculated results for unsteady flows around a bi-convex cascade and a fan tip section highlight the necessity of including viscous effects in predictions of turbomachinery blade flutter at transonic flow conditions.


2012 ◽  
Vol 1397 ◽  
Author(s):  
Seon-Bae Kim ◽  
Jung-Hyun Park ◽  
Seung-Hyun Kim ◽  
Hosang Ahn ◽  
H. Clyde Wikle ◽  
...  

ABSTRACTA transverse (d33) mode piezoelectric cantilever was fabricated for energy harvesting. Various dimensions of interdigital electrodes (IDE) were deposited on a piezoelectric layer to examine the effects of electrode design on the performance of energy harvesters. Modeling was performed to calculate the output power of the devices. The estimation was based on Roundy’s analytical modeling derived for a d31 mode piezoelectric energy harvester (PEH). In order to apply the Roundy’s model to d33 mode PEH, the IDE configuration was converted to the area of top and bottom electrodes (TBE). The power conversion in d33 mode PEH was commonly estimated by the product of piezoelectric layer’s thickness and finger electrode’s length. In addition, the spacing between fingers was regarded as gap between top and bottom electrodes. However, the output power in a transverse mode PEH increases continuously with the increase of finger spacing, which does not correspond to experimental results. In this research, the dimension of IDE was converted to that of TBE using conformal mapping, and variation of power of PEH was remodeled. The modified model suggests that the maximum power in a transverse mode PEH is obtained when the finger spacing is identical with effective finger spacing. The output power then decreases when finger spacing is larger than effective finger spacing. The decrease of efficiency may result from insufficient degree of poling and increased charged defect with increasing finger spacing.


1988 ◽  
Vol 197 ◽  
pp. 139-155 ◽  
Author(s):  
Johan Groth ◽  
Arne V. Johansson

Turbulence suppression by use of screens was studied in a small wind tunnel especially designed and built for the purpose. Wide ranges of mesh sizes and wire-diameter Reynolds numbers were covered in the present investigation, enabling the study of sub- and super-critical screens under the same, well-controlled, flow conditions. For the latter type small-scale fluctuations, produced by the screen itself, interact with the incoming turbulence. In the immediate vicinity of the screen the turbulence was found to be highly anisotropic and the intensities were higher than on the upstream side. Downstream of a short initial decay region, where the intensities decrease rapidly, the return to isotropy was found to be much slower than for the unmanipulated turbulence. The latter was generated by a square rod grid, and was shown to become practically isotropic beyond a distance of roughly 20 mesh widths from the grid. The role of the turbulence scales for the overall reduction effectiveness, and for the optimization of screen combinations for application in low-turbulence wind tunnels was studied.


Author(s):  
Thiago Seuaciuc-Oso´rio ◽  
Mohammed F. Daqaq

This work addresses the accuracy and convergence of reduced-order models (ROMs) of energy harvesters. Two types of energy harvesters are considered, a magnetostrictive rod in axial vibrations and a piezoelectric cantilever beam in traverse oscillations. The partial differential equations (PDEs) and associated boundary conditions governing the motion of these harvesters are obtained. The eigenvalue problem is then solved for the exact eigenvalues and modeshapes. Furthermore, an exact expression for the steady-sate output power is attained by direct solution of the PDEs. Subsequently, the results are compared to a ROM attained following the Rayleigh-Ritz procedure. It is observed that the eigenvalues and output power near the first resonance frequency are more accurate and has a much faster convergence to the exact solution for the piezoelectric cantilever beam. In addition, it is shown that the convergence is governed by two dimensionless constants, one that is related to the electromechanical coupling and the other to the ratio between the time constant of the mechanical oscillator and the harvesting circuit. Using these results, conclusions are drawn with regards to the design values for which the common single-mode ROM is accurate.


1977 ◽  
Vol 82 (2) ◽  
pp. 371-387 ◽  
Author(s):  
Shigeo Uchida ◽  
Hiroshi Aoki

Physiological pumps produce flows by alternate contraction and expansion of the vessel. When muscles start to squeeze its wall the valve at the upstream end is closed and that at the downstream end is opened, and the fluid is pumped out in the downstream direction. These systems can be modelled by a semi-infinite pipe with one end closed by a compliant membrane which prevents only axial motion of the fluid, leaving radial motion completely unrestricted. In the present paper an exact similar solution of the Navier–Stokes equation for unsteady flow is a semi-infinite contracting or expanding circular pipe is calculated and reveals the following characteristics of this type of flow. In a contracting pipe the effects of viscosity are limited to a thin boundary layer attached to the wall, which becomes thinner for higher Reynolds numbers. In an expanding pipe the flow adjacent to the wall is highly retarded and eventually reverses at Reynolds numbers above a critical value. The pressure gradient along the axis of pipe is favourable for a contracting wall, while it is adverse for an expanding wall in most cases. These solutions are valid down to the state of a completely collapsed pipe, since the nonlinearity is retained in full. The results of the present theory may be applied to the unsteady flow produced by a certain class of forced contractions and expansions of a valved vein or a thin bronchial tube.


Author(s):  
Felix Ewere ◽  
Gang Wang

In this paper, we investigate a galloping piezoelectric energy harvester (GPEH) with a square bluff body. Comprehensive wind tunnel tests are conducted and experimental data are used to validate our analytical approximate solutions, which are derived from a coupled aero-electro-mechanical model. In addition, the effects of impact disturbances using a bump are investigated. The goal is to improve the performance of baseline GPEH. We expect to collect physical insight to design an optimal nonlinear GPEH configuration by placing bumps accordingly. Lessons learnt from this study will be used to improve the performance of future nonlinear GPEHs and lead to a practical device.


Sign in / Sign up

Export Citation Format

Share Document