Sensible Pathways for Sensorium-Gameness Integration and Embedment in Design Tools for Multi-Phase Iterative Creative Synthesis in Design and Engineering Processes

Author(s):  
Robert E. Wendrich

Current and ongoing research and experimentations in the creation, design and build of low-cost, high-value prototypes for novel and unconventional interaction devices (IxD) in combination with cyber-physical system (CPS) (i.e. hybrid design tools (HDT), blended spaces) tangible user interfaces (TUI) and use of sensor technology lead to a variety of novel interaction modalities, experiences and possibilities. In line with this research, we propose a first prototype Human Sensor Selection Tool (HSST) as a preliminary guide and guidelines for design and engineering domains. The HSST is based on and inspired by the ‘five human senses’ [1], a plethora in human body signals (e.g. proprioceptive, vestibular) and gestures (e.g. facial expression, (e-)motions) that could be integrated, translated, transformed, adapted or mimicked to enhance and enrich the interaction modalities with for example computer-aided design (CAD), computer-aided technologies (CAx), and effectively affective CPS.

Author(s):  
Gary A. Gabriele ◽  
Agustî Maria I. Serrano

Abstract The need for superior design tools has lead to the development of better and more complex computer aided design programs. Two of the more important new developments in application tools being investigation are Object Oriented Languages, and HyperMedia. Object Oriented Languages allow the development of CAD tools where the parts being designed and the design procedures specified are conceptualized as objects. This allows for the development of design aids that are non-procedural and more readily manipulated by the user trying to accomplish a design task. HyperMedia allows for the easy inclusion of many different types of data, such as design charts and graphs, into the tool that are normally difficult to include in design tools programmed with more conventional programming languages. This paper explores the development of a computer aided design tool for the design of a single stage gear box using the development HyperCard® environment and the HyperTalk® programming language. The resulting program provides a user friendly interface, the ability to handle several kinds of design information including graphic and textual, and a non-procedural design tool to help the user design simple, one stage gear boxes. Help facilities in the program make it suitable for undergraduate instruction in a machine elements design course.


Author(s):  
Antor Mahamudul Hashan ◽  
Abdullah Haidari ◽  
Srishti Saha ◽  
Titas Paul

Due to the rapid development of technology, the use of numerically controlled machines in the industry is increasing. The main idea behind this paper is computer-aided design (CAD) based low-cost computer numerical control 2D drawing robot that can accurately draw complex circuits, diagrams, logos, etc. The system is created using open-source hardware and software, which makes it available at a low cost. The open-source LibreCAD application has been used for computer-aided design. Geometric data of a CAD model is converted to coordinate points using the python-based F-Engrave application. This system uses the Arduino UNO board as a signal generator of the universal g-code sender without compromising the performance. The proposed drawing robot is designed as a low-cost robot for educational purposes and aims to increase the student's interest in robotics and computer-aided design (CAD) skills to the next level. The drawing robot structure has been developed, and it meets the requirements of low cost with satisfactory experimental results.


Author(s):  
Jeff Heisserman ◽  
Raju Mattikalli

Abstract Computer aided design tools are gaining popularity in industry due to their ability to model the geometric aspects of products. This has shown substantial benefit for reducing the need and expense of building physical prototypes and allowing parts and tooling to be manufactured directly from these models. However, the current capabilities in existing CAD tools for modeling assemblies are quite limited. In this paper we introduce a representation for describing interfaces between parts within hierarchical assemblies for capturing functional and physical mating relations. This representation is designed to support automated reasoning and automated generation and modification of assemblies. It is also designed for use with very large assemblies, compactly representing the interfaces of parts and assemblies that are reused within larger assemblies. We describe how this representation is used in our prototype design system, Genesis, for designing aircraft systems.


Author(s):  
Sudheer Bayanker ◽  
Joshua D. Summers ◽  
Anand K. Gramopadhye

This paper presents an experimental investigation into input suitability for human-computer interaction during computer aided design operations. Specifically, three types of operations, synthesis, interrogation, and modification, are examined with respect to three different types of user interfaces, mouse, direct tablet, and indirect tablet. The study, using undergraduate student participants in an introductory engineering graphics course, demonstrates that the mouse performs the highest across the dimensions of completion time and number of errors. However, the direct tablet, using a pen like device directly on the visualization screen, shows promise.


Sign in / Sign up

Export Citation Format

Share Document