Mesoscale Multi-Physics Simulation of Solidification in Selective Laser Melting Process Using a Phase Field and Thermal Lattice Boltzmann Model

Author(s):  
Dehao Liu ◽  
Yan Wang

Selective laser melting (SLM) is a powder bed based additive manufacturing process by melting fine-grained metallic powders with a laser heating source. Understanding the solidification of alloys during SLM process is of importance for accurate prediction of microstructures and properties for process design and optimization. In this study, a multi-physics model is developed to simulate evolution of alloy microstructure during solidification, which incorporates heat transfer, fluid dynamics, kinetics of phase transformations, and grain growth. In this integrated simulation framework, the phase field method for the dendritic growth of a dilute binary alloy is coupled with the thermal lattice Boltzmann method for the melt flow and heat transfer. The effects of latent heat, melt flow and cooling rate on solidification process are also investigated. The multi-physics simulation results provide new insight to predict the complex solidification process more accurately than single-physics approaches.

Equipment ◽  
2006 ◽  
Author(s):  
S. Tsopanos ◽  
M. Wong ◽  
I. Owen ◽  
C. J. Sutcliffe

2007 ◽  
Vol 254 (4) ◽  
pp. 975-979 ◽  
Author(s):  
A.V. Gusarov ◽  
I. Yadroitsev ◽  
Ph. Bertrand ◽  
I. Smurov

Author(s):  
Jun Zhou ◽  
Hai-Lung Tsai

Dual-beam laser welding has become an emerging joining technique. Studies have demonstrated that it can provide benefits over conventional single-beam laser welding, such as increasing keyhole stability, slowing down cooling rate and delaying the humping onset to a higher welding speed. It is also reported to be able to improve weld quality significantly. However, due to its complexity the development of this promising technique has been limited to the trial-and-error procedure. In this study, mathematical models are developed to investigate the heat transfer, melt flow, and solidification process in three-dimensional dual-beam laser keyhole welding. Effects of key parameters, such as laser-beam configuration on melt flow, weld shape, and keyhole dynamics are studied. Some experimentally observed phenomena, such as the changes of the weld pool shape from oval to circle and from circle to oval during the welding process are analyzed in current study.


Author(s):  
Mohammad Masoomi ◽  
Xiang Gao ◽  
Scott M. Thompson ◽  
Nima Shamsaei ◽  
Linkan Bian ◽  
...  

Selective Laser Melting (SLM), a laser powder-bed fusion (PBF-L) additive manufacturing method, utilizes a laser to selectively fuse adjacent metal powders. The powders are aligned in a bed that moves vertically to allow for layer-by-layer part construction-Process-related heat transfer and thermal gradients have a strong influence on the microstructural features, and subsequent mechanical properties, of the parts fabricated via SLM. In order to understand and control the heat transfer inherent to SLM, and to ensure high quality parts with targeted microstructures and mechanical properties, comprehensive knowledge of the related energy and mass transport during manufacturing is required. In this study, the transient temperature distribution within and around parts being fabricated via SLM is numerically simulated and the results are provided to aid in quantify the SLM heat transfer. In order to verify simulation output, and to estimate actual thermal gradients and heat transfer, experiments were separately conducted within a SLM machine using a substrate with embedded thermocouples. The experiments focused on characterizing heat fluxes during initial deposition on an initially-cold substrate and during the fabrication of a thin-walled structure built via stainless steel 17-4 powders. Results indicate that it is important to model heat transfer thorough powder bed as well as substrate.


Author(s):  
Keqiang Xing ◽  
Yong Tao

The lattice Boltzmann method (LBM) as a relatively new numerical scheme has recently achieved considerable success in simulating fluid flows and associated transport phenomena. However, application of this method to heat transfer problems has been at a stage of infancy. In this work, a thermal lattice Boltzmann model is employed to simulate a two-dimensional, steady flow in a symmetric bifurcation under constant temperature and constant heat flux boundary conditions. The bifurcation effects on the heat transfer and fluid flow are investigated and comparisons are made with the straight tube. Also, different bifurcation angles are simulated and the results are compared with the work of the other researchers.


Sign in / Sign up

Export Citation Format

Share Document