Modeling, Simulation and Experimental Validation of Heat Transfer During Selective Laser Melting

Author(s):  
Mohammad Masoomi ◽  
Xiang Gao ◽  
Scott M. Thompson ◽  
Nima Shamsaei ◽  
Linkan Bian ◽  
...  

Selective Laser Melting (SLM), a laser powder-bed fusion (PBF-L) additive manufacturing method, utilizes a laser to selectively fuse adjacent metal powders. The powders are aligned in a bed that moves vertically to allow for layer-by-layer part construction-Process-related heat transfer and thermal gradients have a strong influence on the microstructural features, and subsequent mechanical properties, of the parts fabricated via SLM. In order to understand and control the heat transfer inherent to SLM, and to ensure high quality parts with targeted microstructures and mechanical properties, comprehensive knowledge of the related energy and mass transport during manufacturing is required. In this study, the transient temperature distribution within and around parts being fabricated via SLM is numerically simulated and the results are provided to aid in quantify the SLM heat transfer. In order to verify simulation output, and to estimate actual thermal gradients and heat transfer, experiments were separately conducted within a SLM machine using a substrate with embedded thermocouples. The experiments focused on characterizing heat fluxes during initial deposition on an initially-cold substrate and during the fabrication of a thin-walled structure built via stainless steel 17-4 powders. Results indicate that it is important to model heat transfer thorough powder bed as well as substrate.

Author(s):  
Evren Yasa ◽  
Jan Deckers ◽  
Jean-Pierre Kruth ◽  
Marleen Rombouts ◽  
Jan Luyten

Selective laser melting (SLM), a powder metallurgical (PM) additive manufacturing (AM) technology, is able to produce fully functional parts directly from standard metal powders without using any intermediate binders or any additional post-processing steps. During the process, a laser beam selectively scans a powder bed according to the CAD data of the part to be produced and completely melts the powder particles together. Stacking and bonding two-dimensional powder layers in this way, allows production of fully dense parts with any geometrical complexity. The scanning of the powder bed by the laser beam can be achieved in several different ways, one of which is island or sectoral scanning. In this way, the area to be scanned is divided in small square areas (‘sectors’) which are scanned in a random order. This study is carried out to explore the influence of sectoral scanning on density, surface quality, mechanical properties and residual stresses formed during SLM. The experiments are carried out on a machine with an Nd:YAG laser source using AISI 316L stainless steel powder. As a result of this experimental study, it is concluded that sectoral scanning has some advantages such as lower residual stresses and better surface quality. However, the selection of parameters related to sectoral scanning is a critical task since it may cause aligned porosity at the edges between sectors or scanned tracks, which is very undesired in terms of mechanical properties.


Author(s):  
Xiaoqing Wang ◽  
Xibing Gong ◽  
Kevin Chou

This study presents a thorough literature review on the powder-bed laser additive manufacturing processes such as selective laser melting (SLM) of Inconel 718 parts. The paper first introduces the general aspects of powder-bed laser additive manufacturing and then discusses the unique characteristics and advantages of SLM. Moreover, the bulk of this study includes extensive discussions of microstructures and mechanical properties, together with the application ranges, of Inconel 718 parts fabricated by SLM.


2014 ◽  
Vol 783-786 ◽  
pp. 898-903 ◽  
Author(s):  
Anne Mertens ◽  
Sylvie Reginster ◽  
Quentin Contrepois ◽  
Thierry Dormal ◽  
Olivier Lemaire ◽  
...  

In this study, samples of stainless steel AISI 316L have been processed by selective laser melting, a layer-by-layer near-net-shape process allowing for an economic production of complex parts. The resulting microstructures have been characterised in details in order to reach a better understanding of the solidification and consolidation processes. The influence of the processing parameters on the mechanical properties was investigated by means of uniaxial tensile testing performed on samples produced with different main orientations with respect to the building direction. A strong anisotropy of the mechanical behaviour was thus interpreted in relation with the microstructures and the processing conditions.


2019 ◽  
Vol 818 ◽  
pp. 72-76 ◽  
Author(s):  
Konda Gokuldoss Prashanth ◽  
Sergio Scudino

Laser based powder bed fusion (LBPF) or selective laser melting (SLM) is making a leap march towards fabricating novel materials with improved functionalities. An attempt has been made here to fabricate hard quasicrystalline composites via SLM, which demonstrates that the process parameters can be used to vary the phases in the composites. The mechanical properties of the composite depend on their constituents and hence can be varied by varying the process parameters. The results show that SLM not only produces parts with improved functionalities and complex shape but also leads to defined phases and tunable properties.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2354 ◽  
Author(s):  
Bin Liu ◽  
Zezhou Kuai ◽  
Zhonghua Li ◽  
Jianbin Tong ◽  
Peikang Bai ◽  
...  

Multi-laser beam selective laser melting (SLM) technology based on a powder bed has been used to manufacture AlSi10Mg samples. The AlSi10Mg alloy was used as research material to systematically study the performance consistency of both the laser overlap areas and the isolated areas of the multi-laser beam SLM manufactured parts. The microstructures and mechanical properties of all isolated and overlap processing areas were compared under optimized process parameters. It was discovered that there is a raised platform at the junction of the overlap areas and the isolated areas of the multi-laser SLM samples. The roughness is significantly reduced after two scans. However, the surface roughness of the samples is highest after four scans. As the number of laser scans increases, the relative density of the overlap areas of the samples improves, and there is no significant change in hardness. The tensile properties of the tensile samples are poor when the overlap area width is 0, 0.1, or 0.2 mm. When the widths of the overlap areas are equal to or greater than 0.3 mm, there is no significant difference in the tensile strength between the overlap and the isolated areas.


2020 ◽  
Vol 10 (3) ◽  
pp. 760
Author(s):  
Dongqi Zhang ◽  
Jie Yu ◽  
Hui Li ◽  
Xin Zhou ◽  
Changhui Song ◽  
...  

Selective laser melting (SLM) is a layer by layer process of melting and solidifying of metal powders. The surface quality of the previous layer directly affects the uniformity of the next layer. If the surface roughness value of the previous layer is large, there is the possibility of not being able to complete the layering process such that the entire process has to be abandoned. At least, it may result in long term durability problem and the inhomogeneity, may even make the processed structure not be able to be predicted. In the present study, the ability of a fiber laser to in-situ polish the rough surfaces of four typical additive-manufactured alloys, namely, Ti6Al4V, AlSi10Mg, 316L and IN718 was demonstrated. The results revealed that the surface roughness of the as-received alloys could be reduced to about 3 μm through the application of the laser-polishing process, and the initial surfaces had roughness values of 8.80–16.64 μm. Meanwhile, for a given energy density, a higher laser power produced a laser-polishing effect that was often more obvious, with the surface roughness decreasing with an increase in the laser power. Further, the polishing strategy will be optimized by simulation in our following study.


2021 ◽  
Author(s):  
Benjamin S. Terry ◽  
Brandon Baucher ◽  
Anil Chaudhary ◽  
Subhadeep Chakraborty

Abstract This paper reports some recent results related to active monitoring of Selective Laser Melting (SLM) processes through analysis of layer-by-layer surface profile data. Estimation of fault probability was carried out experimentally in a Renishaw AM250 machine, by collecting Fe3Si powder bed height data, in-situ, during the metal additive manufacturing of a Heat Exchanger section, comprised of a series of conformal channels. Specifically, high-resolution powder bed surface height data from a laser profilometer was linked to post-print ground-truth labels (faulty or nominal) for each site from CT scans, by training a shallow artificial neural net (ANN). The ANN demonstrated interesting capabilities for discovering correlations between surface roughness characteristics and the presence and size of faults. Strong performance was achieved with respect to several standard metrics for classifying faulty and nominal sites. These developments can potentially enable active monitoring processes to become a future component of a layer-by-layer feedback system for better control of SLM processes.


Author(s):  
Xiaoqing Wang ◽  
Xibing Gong ◽  
Kevin Chou

This study presents a thorough literature review on the powder-bed laser additive manufacturing processes such as selective laser melting of Inconel 718 parts. This article first introduces the general aspects of powder-bed laser additive manufacturing and then discusses the unique characteristics and advantages of selective laser melting. The bulk of this study includes extensive discussions of microstructures and mechanical properties, together with the application ranges of Inconel 718 parts fabricated by selective laser melting.


2017 ◽  
Vol 266 ◽  
pp. 3-7
Author(s):  
Syed H. Riza ◽  
Ashish M. Ashok ◽  
Syed H. Masood ◽  
Igor Sbarski

The Selective Laser Melting (SLM) process has been proved as the most effective method among Additive Manufacturing (AM) technologies to produce hard, dense and strong metallic structures with intricate shapes and profiles from wide range of metallic alloys. The SLM generated structures from 17-4PH stainless steel high strength alloys involve layer by layer building up through laser melting of successively deposited powder layers. Therefore, the mechanical properties of such structures need to be thoroughly checked and investigated before putting these materials to practical applications. This research mainly investigates the cryogenic impact properties of SLM generated 17-4PH specimen. These characteristics are very important in applications requiring high strength customized structures that could maintain their mechanical properties at sub-zero temperatures. The experimental analysis proves that SLM is a very reliable technology to produce high strength metallic structures and these specimens can function efficiently in extreme conditions.


Sign in / Sign up

Export Citation Format

Share Document