scholarly journals Development of a Passive and Slope Adaptable Prosthetic Foot

Author(s):  
David E. Amiot ◽  
Rachel M. Schmidt ◽  
Angwei Law ◽  
Erich P. Meinig ◽  
Lynn Yu ◽  
...  

Historically, users of prosthetic ankles have relied on actively operated systems to provide effective slope adaptability. However, there are many drawbacks to these systems. This research builds upon work previously completed by Hansen et al. as it develops a passive, hydraulically operated prosthetic ankle with the capability of adapting to varying terrain in every step. Using gait cycle data and an analysis of ground reaction forces, the team determined that weight activation was the most effective way to activate the hydraulic circuit. Evaluations of the system pressure and energy showed that although the spring damper system results in a loss of 9J of energy to the user, the footplate stores 34J more than a standard prosthesis. Therefore, the hydraulic prosthetic provides a 54% increase in stored energy when compared to a standard prosthesis. The hydraulic circuit manifold prototype was manufactured and tested. Through proof of concept testing, the prototype proved to be slope adaptable by successfully achieving a plantarflexion angle of 16 degrees greater than a standard prosthetic foot currently available on the market.

2011 ◽  
Vol 133 (5) ◽  
Author(s):  
Lyle T. Jackson ◽  
Patrick M. Aubin ◽  
Matthew S. Cowley ◽  
Bruce J. Sangeorzan ◽  
William R. Ledoux

The symptomatic flatfoot deformity (pes planus with peri-talar subluxation) can be a debilitating condition. Cadaveric flatfoot models have been employed to study the etiology of the deformity, as well as invasive and noninvasive surgical treatment strategies, by evaluating bone positions. Prior cadaveric flatfoot simulators, however, have not leveraged industrial robotic technologies, which provide several advantages as compared with the previously developed custom fabricated devices. Utilizing a robotic device allows the researcher to experimentally evaluate the flatfoot model at many static instants in the gait cycle, compared with most studies, which model only one to a maximum of three instances. Furthermore, the cadaveric tibia can be statically positioned with more degrees of freedom and with a greater accuracy, and then a custom device typically allows. We created a six degree of freedom robotic cadaveric simulator and used it with a flatfoot model to quantify static bone positions at ten discrete instants over the stance phase of gait. In vivo tibial gait kinematics and ground reaction forces were averaged from ten flatfoot subjects. A fresh frozen cadaveric lower limb was dissected and mounted in the robotic gait simulator (RGS). Biomechanically realistic extrinsic tendon forces, tibial kinematics, and vertical ground reaction forces were applied to the limb. In vitro bone angular position of the tibia, calcaneus, talus, navicular, medial cuneiform, and first metatarsal were recorded between 0% and 90% of stance phase at discrete 10% increments using a retroreflective six-camera motion analysis system. The foot was conditioned flat through ligament attenuation and axial cyclic loading. Post-flat testing was repeated to study the pes planus deformity. Comparison was then made between the pre-flat and post-flat conditions. The RGS was able to recreate ten gait positions of the in vivo pes planus subjects in static increments. The in vitro vertical ground reaction force was within ±1 standard deviation (SD) of the in vivo data. The in vitro sagittal, coronal, and transverse plane tibial kinematics were almost entirely within ±1 SD of the in vivo data. The model showed changes consistent with the flexible flatfoot pathology including the collapse of the medial arch and abduction of the forefoot, despite unexpected hindfoot inversion. Unlike previous static flatfoot models that use simplified tibial degrees of freedom to characterize only the midpoint of the stance phase or at most three gait positions, our simulator represented the stance phase of gait with ten discrete positions and with six tibial degrees of freedom. This system has the potential to replicate foot function to permit both noninvasive and surgical treatment evaluations throughout the stance phase of gait, perhaps eliciting unknown advantages or disadvantages of these treatments at other points in the gait cycle.


2000 ◽  
Vol 83 (1) ◽  
pp. 288-300 ◽  
Author(s):  
R. Grasso ◽  
M. Zago ◽  
F. Lacquaniti

Human erect locomotion is unique among living primates. Evolution selected specific biomechanical features that make human locomotion mechanically efficient. These features are matched by the motor patterns generated in the CNS. What happens when humans walk with bent postures? Are normal motor patterns of erect locomotion maintained or completely reorganized? Five healthy volunteers walked straight and forward at different speeds in three different postures (regular, knee-flexed, and knee- and trunk-flexed) while their motion, ground reaction forces, and electromyographic (EMG) activity were recorded. The three postures imply large differences in the position of the center of body mass relative to the body segments. The elevation angles of the trunk, pelvis, and lower limb segments relative to the vertical in the sagittal plane, the ground reaction forces and the rectified EMGs were analyzed over the gait cycle. The waveforms of the elevation angles along the gait cycle remained essentially unchanged irrespective of the adopted postures. The first two harmonics of these kinematic waveforms explain >95% of their variance. The phase shift but not the amplitude ratio between the first harmonic of the elevation angle waveforms of adjacent pairs was affected systematically by changes in posture. Thigh, shank, and foot angles covaried close to a plane in all conditions, but the plane orientation was systematically different in bent versus erect locomotion. This was explained by the changes in the temporal coupling among the three segments. For walking speeds >1 m s−1, the plane orientation of bent locomotion indicates a much lower mechanical efficiency relative to erect locomotion. Ground reaction forces differed prominently in bent versus erect posture displaying characteristics intermediate between those typical of walking and those of running. Mean EMG activity was greater in bent postures for all recorded muscles independent of the functional role. The waveforms of the muscle activities and muscle synergies also were affected by the adopted posture. We conclude that maintaining bent postures does not interfere either with the generation of segmental kinematic waveforms or with the planar constraint of intersegmental covariation. These characteristics are maintained at the expense of adjustments in kinetic parameters, muscle synergies and the temporal coupling among the oscillating body segments. We argue that an integrated control of gait and posture is made possible because these two motor functions share some common principles of spatial organization.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5758
Author(s):  
Nicola Petrone ◽  
Gianfabio Costa ◽  
Gianmario Foscan ◽  
Antonio Gri ◽  
Leonardo Mazzanti ◽  
...  

Knowledge of loads acting on running specific prostheses (RSP), and in particular on running prosthetic feet (RPF), is crucial for evaluating athletes’ technique, designing safe feet, and biomechanical modelling. The aim of this work was to develop a J-shaped and a C-shaped wearable instrumented running prosthetic foot (iRPF) starting from commercial RPF, suitable for load data collection on the track. The sensing elements are strain gauge bridges mounted on the foot in a configuration that allows decoupling loads parallel and normal to the socket-foot clamp during the stance phase. The system records data on lightweight athlete-worn loggers and transmits them via Wi-Fi to a base station for real-time monitoring. iRPF calibration procedure and static and dynamic validation of predicted ground-reaction forces against those measured by a force platform embedded in the track are reported. The potential application of this wearable system in estimating determinants of sprint performance is presented.


1992 ◽  
Vol 16 (1) ◽  
pp. 19-24 ◽  
Author(s):  
F. Prince ◽  
P. Allard ◽  
R. G. Therrien ◽  
B. J. McFadyen

In running, large gait asymmetry is expected due to the inability of the foot prosthesis to comply with the kinematic demands and produce a powerful plantarflexion moment. In this work, interlimb asymmetry in below-knee (BK) amputee running gait was assessed for one rigid and three flexible keel prostheses, using vertical and anteroposterior ground reaction forces and respective impulses. Nine BK amputees and 6 controls participated in this study. The running speed was monitored by two light sensitive detectors while the ground reaction forces were measured with a Kistler force plate. Between the prosthetic side and the sound limb the impulse indicator showed greater asymmetry than the force. Interlimb asymmetry was very much present in all types of prosthesis tested but is less pronounced in the flexible keel prostheses. In the latter, the asymmetry may be associated with the forcetime history modulation rather than its magnitude alone. Generally, the impulses better describe interlimb asymmetry and the forces allow a greater discrimination between prosthetic foot types.


1981 ◽  
Vol 5 (1) ◽  
pp. 19-22 ◽  
Author(s):  
R. E. Major ◽  
J. Stallard ◽  
G. K. Rose

The variation of ground reaction forces with time for a complete hgo gait cycle using crutches has been synthesized from video recordings and force platform data. This has led to an understanding of the dynamics of hgo ambulation. The results show that when a patient uses the orthosis the crutches provide a subtle control mechanism taking maximum advantage of forward momentum and produce small propulsive forces when needed to make up energy losses.


2006 ◽  
Vol 30 (2) ◽  
pp. 213-223 ◽  
Author(s):  
H. Goujon ◽  
X. Bonnet ◽  
P. Sautreuil ◽  
M. Maurisset ◽  
L. Darmon ◽  
...  

This paper reports on a functional evaluation of prosthetic feet based on gait analysis. The aim is to analyse prosthetic feet behaviour under loads applied during gait in order to quantify user benefits for each foot. Ten traumatic amputees (six trans-tibial and four trans-femoral) were tested using their own prosthetic foot. An original protocol is presented to calculate the forefoot kinematics together with the overall body kinematics and ground reaction forces during gait. In this work, sagittal motion of the prosthetic ankle and the forefoot, time-distance parameters and ground reaction forces were examined. It is shown that an analysis of not only trans-tibial but also trans-femoral amputees provides an insight in the performance of prosthetic feet. Symmetry and prosthetic propulsive force were proved to be mainly dependant on amputation level. In contrast, the flexion of the prosthetic forefoot and several time-distance parameters are highly influenced by foot design. Correlations show influential of foot and ankle kinematics on other parameters. These results suggest that prosthetic foot efficiency depends simultaneously on foot design and gait style. The evaluation, proposed in this article, associated to clinical examination should help to achieve the best prosthetic foot match to a patient.


1995 ◽  
Vol 19 (1) ◽  
pp. 37-45 ◽  
Author(s):  
A. P. Arya ◽  
A. Lees ◽  
H. C. Nerula ◽  
L. Klenerman

The Jaipur prosthetic foot was developed in India in response to specific socio-cultural needs of Indian amputees. It is being used extensively in India and several other developing countries. Its claim of being a cheaper and satisfactory alternative to other prosthetic feet has not been investigated biomechanically. The present study was undertaken to compare its biomechanical properties with the SACH and Seattle feet, using ground reaction forces. Three trans-tibial amputees participated in the experiment which measured the ground reaction force data using a Kistler force plate. Subject's normal foot was used as a reference. Six variables from the vertical and anteroposterior components of ground reaction forces were quantified, their statistical analysis showed that the normal foot generates significantly larger ground reaction forces than the prosthetic foot. The shock absortion capacity of the SACH foot was found to be better when compared with the other two feet, while the Jaipur foot allowed a more natural gait and was closer in performance to the normal foot. None of the prostheses significantly influenced the locomotor style of the amputees.


Sign in / Sign up

Export Citation Format

Share Document