scholarly journals Development of Instrumented Running Prosthetic Feet for the Collection of Track Loads on Elite Athletes

Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5758
Author(s):  
Nicola Petrone ◽  
Gianfabio Costa ◽  
Gianmario Foscan ◽  
Antonio Gri ◽  
Leonardo Mazzanti ◽  
...  

Knowledge of loads acting on running specific prostheses (RSP), and in particular on running prosthetic feet (RPF), is crucial for evaluating athletes’ technique, designing safe feet, and biomechanical modelling. The aim of this work was to develop a J-shaped and a C-shaped wearable instrumented running prosthetic foot (iRPF) starting from commercial RPF, suitable for load data collection on the track. The sensing elements are strain gauge bridges mounted on the foot in a configuration that allows decoupling loads parallel and normal to the socket-foot clamp during the stance phase. The system records data on lightweight athlete-worn loggers and transmits them via Wi-Fi to a base station for real-time monitoring. iRPF calibration procedure and static and dynamic validation of predicted ground-reaction forces against those measured by a force platform embedded in the track are reported. The potential application of this wearable system in estimating determinants of sprint performance is presented.

2006 ◽  
Vol 30 (2) ◽  
pp. 213-223 ◽  
Author(s):  
H. Goujon ◽  
X. Bonnet ◽  
P. Sautreuil ◽  
M. Maurisset ◽  
L. Darmon ◽  
...  

This paper reports on a functional evaluation of prosthetic feet based on gait analysis. The aim is to analyse prosthetic feet behaviour under loads applied during gait in order to quantify user benefits for each foot. Ten traumatic amputees (six trans-tibial and four trans-femoral) were tested using their own prosthetic foot. An original protocol is presented to calculate the forefoot kinematics together with the overall body kinematics and ground reaction forces during gait. In this work, sagittal motion of the prosthetic ankle and the forefoot, time-distance parameters and ground reaction forces were examined. It is shown that an analysis of not only trans-tibial but also trans-femoral amputees provides an insight in the performance of prosthetic feet. Symmetry and prosthetic propulsive force were proved to be mainly dependant on amputation level. In contrast, the flexion of the prosthetic forefoot and several time-distance parameters are highly influenced by foot design. Correlations show influential of foot and ankle kinematics on other parameters. These results suggest that prosthetic foot efficiency depends simultaneously on foot design and gait style. The evaluation, proposed in this article, associated to clinical examination should help to achieve the best prosthetic foot match to a patient.


2011 ◽  
Vol 133 (5) ◽  
Author(s):  
Lyle T. Jackson ◽  
Patrick M. Aubin ◽  
Matthew S. Cowley ◽  
Bruce J. Sangeorzan ◽  
William R. Ledoux

The symptomatic flatfoot deformity (pes planus with peri-talar subluxation) can be a debilitating condition. Cadaveric flatfoot models have been employed to study the etiology of the deformity, as well as invasive and noninvasive surgical treatment strategies, by evaluating bone positions. Prior cadaveric flatfoot simulators, however, have not leveraged industrial robotic technologies, which provide several advantages as compared with the previously developed custom fabricated devices. Utilizing a robotic device allows the researcher to experimentally evaluate the flatfoot model at many static instants in the gait cycle, compared with most studies, which model only one to a maximum of three instances. Furthermore, the cadaveric tibia can be statically positioned with more degrees of freedom and with a greater accuracy, and then a custom device typically allows. We created a six degree of freedom robotic cadaveric simulator and used it with a flatfoot model to quantify static bone positions at ten discrete instants over the stance phase of gait. In vivo tibial gait kinematics and ground reaction forces were averaged from ten flatfoot subjects. A fresh frozen cadaveric lower limb was dissected and mounted in the robotic gait simulator (RGS). Biomechanically realistic extrinsic tendon forces, tibial kinematics, and vertical ground reaction forces were applied to the limb. In vitro bone angular position of the tibia, calcaneus, talus, navicular, medial cuneiform, and first metatarsal were recorded between 0% and 90% of stance phase at discrete 10% increments using a retroreflective six-camera motion analysis system. The foot was conditioned flat through ligament attenuation and axial cyclic loading. Post-flat testing was repeated to study the pes planus deformity. Comparison was then made between the pre-flat and post-flat conditions. The RGS was able to recreate ten gait positions of the in vivo pes planus subjects in static increments. The in vitro vertical ground reaction force was within ±1 standard deviation (SD) of the in vivo data. The in vitro sagittal, coronal, and transverse plane tibial kinematics were almost entirely within ±1 SD of the in vivo data. The model showed changes consistent with the flexible flatfoot pathology including the collapse of the medial arch and abduction of the forefoot, despite unexpected hindfoot inversion. Unlike previous static flatfoot models that use simplified tibial degrees of freedom to characterize only the midpoint of the stance phase or at most three gait positions, our simulator represented the stance phase of gait with ten discrete positions and with six tibial degrees of freedom. This system has the potential to replicate foot function to permit both noninvasive and surgical treatment evaluations throughout the stance phase of gait, perhaps eliciting unknown advantages or disadvantages of these treatments at other points in the gait cycle.


Author(s):  
Peter G. Adamczyk ◽  
Michelle Roland ◽  
Michael E. Hahn

Prosthetic foot stiffness has been recognized as an important factor in optimizing the walking performance of amputees [1–3]. Commercial feet are available in a range of stiffness categories and geometries. The stiffness of linear displacements of the hindfoot and forefoot for several commercially available feet have been reported to be within a range of 27–68 N/mm [4] and 28–76 N/mm [5], respectively, but these values are most relevant only to the earliest and latest portions of stance phase, when linear compression or rebound naturally occur. In contrast, mid-stance kinetics are more related to the angular stiffness of the foot, which describes the ankle torque produced by angular progression of the lower limb over the foot during this phase. Little data is available regarding the angular stiffness of any commercially available feet. The variety of geometries between manufacturers and models of prosthetic feet makes a direct calculation of effective angular stiffness challenging due to changes in moment arms based on loading condition, intricacies of deformation mechanics of the structural components, and mechanical interaction between hindfoot and forefoot components. Thus, modeling the interaction between hindfoot stiffness, forefoot stiffness, and keel geometries and their combined effect on the angular stiffness of the foot may be a useful tool for correlating functional outcomes with stiffness characteristics of various feet. To understand how each of these factors affects angular stiffness, we developed a foot that can parametrically adjust each of these factors independently. The objective of this study was to mathematically model, design, and experimentally validate a prosthetic foot that has independent hindfoot and forefoot components, allowing for parametric adjustment of stiffness characteristics and keel geometry in future studies of amputee gait.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 74 ◽  
Author(s):  
Nicola Petrone ◽  
Gianfabio Costa ◽  
Gianmario Foscan ◽  
Antonio Gri ◽  
Rosanne Boekestijn ◽  
...  

The knowledge of loads acting on Running Specific Prostheses (RSP), and in particular, on Running Prosthetic Feet (RPF) is crucial for evaluating the athlete’s running technique, designing RPF, and developing models of the runners. The aim of this work was to develop a set of instrumented RPF (iRPF) suitable for track data collection of start, sprinting, and whole run-in and take-off of long jump. The system allows measuring with a portable data logger forces acting on the foot clamp on multiple steps of the athlete without modifying the RSP behavior: The method involves strain gauge bridges applied to each RPF in a configuration that allows decoupling the loads parallel and normal to the foot clamp during the stance phase. Comparison with literature data and validation against force platform data gave confirmation of the validity of the method in the estimation of determinants of sprint performance.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 136
Author(s):  
Ophelie Lariviere ◽  
Thomas Provot ◽  
Laura Valdes-Tamayo ◽  
Maxime Bourgain ◽  
Delphine Chadefaux

Although accelerometers’ responses during running are not perfectly understood, they are widely used to study performance and the risk of injury. To outline the typical tibial acceleration pattern during running, this study aims to investigate the repeatability of acceleration signals with respect to the ground reaction force waveforms. Ten amateur runners were asked to perform ten trials along a straight line. One participant was asked to perform this protocol over ten sessions. Tibial accelerations and ground reaction forces were measured during the stance phase. The coefficient of multiple correlation R was computed to study the intra- and inter-test and subject repeatability of accelerometric and force waveforms. A good (R>0.8) intra- and inter-test repeatability was observed for all measured signals. Similar results were observed for intra-subject repeatability. A good inter-subject repeatability was observed only for the longitudinal acceleration and vertical and antero-posterior forces. Typical accelerometric signatures were outlined for each case studied.


Author(s):  
Michelle Roland ◽  
Peter G. Adamczyk ◽  
Michael E. Hahn

The calculated roll-over shape and respective radius of intact and prosthetic feet has been shown to be a useful measure of lower limb function during walking [1–2]. Hansen et al [3] reported that the roll-over radius, R, is constant over a range of speeds for the intact foot-ankle system. It may be assumed that the prosthetic foot R would also be constant with increased walking speed. Similarly, the angular stiffness of prosthetic feet is not likely to change with walking speed, as the material stiffness remains unchanged. However, the effective angular stiffness of the intact ankle may increase with the plantar flexor moment during the stance phase of gait, which typically increases in magnitude with walking speed.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2372
Author(s):  
Paul S. Sung ◽  
Moon Soo Park

Although the asymmetries of scoliotic gait in adolescent idiopathic scoliosis (AIS) groups have been extensively studied, recent studies indicated conflicting results regarding the ground reaction forces (GRFs) during gait in subjects with spinal deformity. The asymmetry during the stance phase might be clarified with three-dimensional (3D) compensations of GRFs between similar characteristics of subjects with and without AIS. The purpose of this study was to compare the normalized 3D GRF differences during the stance phase of gait while considering age, BMI, and Cobb angle between subjects with and without right AIS. There were 23 subjects with right convexity of thoracic idiopathic scoliosis and 22 age- and gender-matched control subjects. All subjects were right upper/lower limb dominant, and the outcome measures included the Cobb angles, normalized GRF, and KAI. The mediolateral (M/L) third peak force on the dominant limb decreased in the AIS group (t = 2.58, p = 0.01). Both groups demonstrated a significant interaction with the 3D indices (F = 5.41, p = 0.02). The post-hoc analysis identified that the M/L plane of asymmetry was significantly different between groups. The Cobb angles were negatively correlated with the vertical asymmetry index (r = −0.45, p = 0.03); however, there was no significant correlation with age (r = −0.10, p = 0.65) or body mass index (r = −0.28, p = 0.20). The AIS group demonstrated decreased GRF in the dominant limb M/L plane of the terminal stance phase. This compensatory motion was confirmed by a significant group difference on the M/L plane of the KAI. This KAI of vertical asymmetry correlated negatively with the Cobb angle. The asymmetric load transmission with compensatory vertical reactions was evident due to abnormal loading in the stance phase. These kinetic compensatory patterns need to be considered with asymmetry on the dominant limb when developing rehabilitation strategies for patients with AIS.


Author(s):  
Mohammad Kia ◽  
Trent M. Guess ◽  
Antonis Stylianou

Movement simulation and musculoskeletal modeling can predict muscle forces, but current methods are hindered by simplified representations of joint structures. Simulations that incorporate muscle forces, an anatomical representation of the natural knee, and contact mechanics would be a powerful tool in orthopedics. This study combined a validated anatomical model of a knee joint with menisci and a musculoskeletal model of the human lower extremity. A forward-dynamics muscle driven simulation of the stance phase of a walk cycle was simulated in LifeMOD (Lifemodeler, Inc) and muscle forces and ground reaction forces were estimated. The predicted forces were evaluated using test data provided by Vaughan CL. et al. (1999).


Sign in / Sign up

Export Citation Format

Share Document