Development of Active Magnetic Bearing System Using Adaptive Feedforward Cancellation for Compensation and Analysis of External Forces in Rotating Machinery

Author(s):  
Shota Yabui ◽  
Tsuyoshi Inoue

In this research, a rotor system using active magnetic bearing has been proposed to analyze for external forces in rotating machineries. Dynamics of the rotating machineries are influenced from the various external forces such as unbalanced forces, oil film forces at a journal bearing, and seal contact forces. The characteristics of the external forces are dependent on rotating speed and rotating orbit of the rotating shaft. In development the rotating machineries, the analysis of the characteristics of external forces is required under various rotating condition. The proposed system can compensate and analyze for the external forces by using the adaptive feed-forward cancellation (AFC). By using AFC, the proposed system can realize the desired rotating conditions under acting the external forces and analyze the characteristics external forces. The effectiveness of the proposed system has been confirmed experimentally.

Author(s):  
Shota Yabui ◽  
Tsuyoshi Inoue

In this study, a measurement system is developed to analyze periodic external forces acting on a rotating machinery. The dynamics of a rotating machineries are influenced by various periodic external forces such as unbalanced forces, oil film forces at a journal bearing, and seal contact forces. The characteristics of periodic external forces are dependent on the rotating conditions, rotational speed, and rotating orbit of the rotating shaft. The proposed system employs an active magnetic bearing (AMB), which is implemented using an adaptive feed-forward cancellation (AFC). The use of AFC ensures that the proposed system can realize the desired harmonic orbit assuming actual operations under the periodic external forces. Moreover, AFC can measure the periodic external forces in real-time using an adaptive algorithm. The effectiveness of the proposed system is verified experimentally. Experimental results show that the control system can control the rotating shaft to an accuracy of micrometer order using the implemented AFC. The measurement error of the periodic external forces acting on the rotating system is less than 2%.


Author(s):  
A. El-Shafei ◽  
A. S. Dimitri

Journal Bearings are excellent bearings due to their large load carrying capacity and favorable damping characteristics. However, Journal bearings are known to be prone to instabilities. The oil whirl and oil whip instabilities limit the rotor maximum rotating speed. In this paper, a novel approach is used to control the Journal bearing (JB) instability. An Active Magnetic Bearing (AMB) is used to overcome the JB instability and to increase its range of operation. The concept is quite simple: rather than using the AMB as a load carrying element, the AMB is used as a controller only, resulting in a much smaller and more efficient AMB. The load carrying is done by the Journal bearings, exploiting their excellent load carrying capabilities, and the JB instability is overcome with the AMB. This results in a combined AMB/JB that exploits the advantages of each device, and eliminates the deficiencies of each bearing. Different controllers for the AMB to control the JB instability are examined and compared theoretically and numerically. The possibility of collocating the JB and the AMB is also examined. The results illustrate the effectiveness of the concept.


2020 ◽  
pp. 107754632096259
Author(s):  
Shota Yabui ◽  
Hideyuki Inoue ◽  
Tsuyoshi Inoue

Synchronous vibration is a major obstacle to the stable operation of rotating machineries. In previous studies, active control methods were developed to compensate for synchronous vibration using actuators, such as an active magnetic bearing or a piezo actuator. Adaptive feedforward cancellation is another well-known control method and is used to compensate for the synchronous vibration in the actual system. The control methods can compensate for the synchronous vibration; however, the amplitude of the vibration in other frequency ranges can be increased by the waterbed effect due to Bode’s integral theorem. Therefore, there is a trade-off between the compensation of the synchronous vibration and the negative impact of other vibration. In this article, a novel control scheme for the adaptive feedforward cancellation is proposed to eliminate the negative impact due to the waterbed effect. The proposed method controlled the input signal of the adaptive algorithm in the adaptive feedforward cancellation and realized an ideal feedforward controller worked independently from the feedback loop. The effectiveness of this method was verified experimentally using a test rig.


Author(s):  
Yan Xunshi ◽  
Zhao Jingjing ◽  
Sun Zhe ◽  
Shi Zhengang

Online dynamic balance technology is the key to rotor-active magnetic bearing system, which helps the rotating speed of the system surpass the critical speed. Usually, balance weight and angle are calculated by influence coefficient method. However, how to decompose the weight and angle into sub-weights fixed in the balance holes is troublesome, and determined manually by trial and error, which is always time-consuming. In this paper, a new hierarchical and automatic method is proposed to find the optimized solution to select proper sub-weights in a short time, which limits to a pre-defined error. The algorithm focuses on reducing the move of sub-weights and addition of new sub-weights. Experiments show our algorithm perform effective and efficient.


Author(s):  
A. El-Shafei ◽  
A. S. Dimitri

Journal bearings (JBs) are excellent bearings due to their large load carrying capacity and favorable damping characteristics. However, journal bearings are known to be prone to instabilities. The oil whirl and oil whip instabilities limit the rotor maximum rotating speed. In this paper, a novel approach is used to control the journal bearing instability. An active magnetic bearing (AMB) is used to overcome the JB instability and to increase its range of operation. The concept is quite simple: Rather than using the AMB as a load carrying element, the AMB is used as a controller only, resulting in a much smaller and more efficient AMB. The load carrying is done by the journal bearings, exploiting their excellent load carrying capabilities, and the JB instability is overcome with the AMB. This results in a combined AMB/JB that exploits the advantages of each device and eliminates the deficiencies of each bearing. Different controllers for the AMB to control the JB instability are examined and compared theoretically and numerically. The possibility of collocating the JB and the AMB is also examined. The results illustrate the effectiveness of the concept.


Author(s):  
Iain S. Cade ◽  
M. Necip Sahinkaya ◽  
Clifford R. Burrows ◽  
Patrick S. Keogh

Auxiliary bearings are used to prevent rotor/stator contact in active magnetic bearing systems. They are sacrificial components providing a physical limit on the rotor displacement. During rotor/auxiliary bearing contact significant forces normal to the contact zone may occur. Furthermore, rotor slip and rub can lead to localized frictional heating. Linear control strategies may also become ineffective or induce instability due to changes in rotordynamic characteristics during contact periods. This work considers the concept of using actively controlled auxiliary bearings in magnetic bearing systems. Auxiliary bearing controller design is focused on attenuating bearing vibration resulting from contact and reducing the contact forces. Controller optimization is based on the H∞ norm with appropriate weighting functions applied to the error and control signals. The controller is assessed using a simulated rotor/magnetic bearing system. Comparison of the performance of an actively controlled auxiliary bearing is made with that of a resiliently mounted auxiliary bearing. Rotor drop tests, repeated contact tests, and sudden rotor unbalance resulting in trapped contact modes, are considered.


Author(s):  
Jiaguangyi Xiao ◽  
Yong Chen ◽  
Hua Ouyang ◽  
Anjenq Wang

Interactions between casings and bladed-disks of modern turbofan engines may occur through various mechanisms: casing distortions, rotor vibrations and casing vibrations to name a few. These interactions might lead to nonlinear blade vibrations, which could then induce severe damages to both structures. The impacts of casing vibrations on the vibration behaviors of engine blades are studied in this paper. A two-dimensional in-plane model is established in this paper. Fan blade, disk and casing are modeled using beam element. Craig-Bampton model reduction is applied to simplify the model. Penalty method mixed with golden section method is created and used for contact treatments. The interaction is initiated by the external forces acting on the casing. The casing is excited to two-, three- and four-nodal diameter vibration patterns, respectively. In order to capture the core of the problem, contact forces applied to the casing, and casing damping are neglected. Steady casing vibrations could thus be generated. Blade vibrations are calculated in a wide rotating speed range, maximum amplitudes are recorded and studied. The results show that the bladed-disk will have several vibration peaks in the calculated rotating speed range. To figure out the physical mechanisms of these peaks, Fourier spectrums as well as different bladed-disk materials are introduced. Almost all vibration peaks can be explained by three kinds of mechanisms found and summarized in this paper. Two of them are related to travelling waves and the third is related to harmonics. Speed and frequency margins that are related to blade-tip-rub induced vibrations are defined and analyzed. The findings and ideas shown in this paper can be used as a reference in engine preliminary structural design to avoid potential blade tip-rub induced damages.


Sign in / Sign up

Export Citation Format

Share Document