Experimental Exploration of Schallamach Waves and Self-Excitation in a Belt-Drive System

Author(s):  
Yingdan Wu ◽  
Michael Varenberg ◽  
Michael J. Leamy

We study the dynamic behavior of a belt-drive system to explore the effect of operating conditions and system moment of inertia on the generation of waves of detachment (i.e., Schallamach waves) at the belt-pulley interface. A self-excitation phenomenon is reported in which frictional fluctuations serve as harmonic forcing of the pulley, leading to angular velocity oscillations which grow in time. This behavior depends strongly on operating conditions (torque transmitted and pulley speed) and system inertia, and differs between the driver and driven pulleys. A larger net torque applied to the pulley generally yields more remarkable stick-slip oscillations with higher amplitude and lower frequency. Higher driving speeds accelerate the occurrence of stick-slip motion, but have little influence on the oscillation amplitude. Contrary to our expectations, the introduction of flywheels to increase system inertia amplified the frictional disturbances, and hence the pulley oscillations. This does, however, suggest a way of facilitating their study, which may be useful in follow-on research.

2018 ◽  
Vol 86 (3) ◽  
Author(s):  
Yingdan Wu ◽  
Michael Varenberg ◽  
Michael J. Leamy

We experimentally study the dynamic behavior of a belt-drive system to explore the effect of loading conditions, driving speed, and system inertia on both the frequency and amplitude of the observed frictional and rotational instabilities. A self-excited oscillation is reported whereby local detachment events in the belt–pulley interface serve as harmonic forcing of the pulley, leading to angular velocity oscillations that grow in time. Both the frictional instabilities and the pulley oscillations depend strongly on operating conditions and system inertia, and differ between the driver and driven pulleys. A larger net torque applied to the pulley generally intensifies Schallamach waves of detachment in the driver case but has little influence on other measured response quantities. Higher driving speeds accelerate the occurrence of frictional instabilities as well as pulley oscillations in both cases. Increasing the system's inertia does not affect the behavior of contact instabilities, but does lead to a steadier rotation of the pulley and more pronounced fluctuations in the belt tension. A simple dynamic model of the belt-drive system demonstrates good agreement with the experimental results and provides strong evidence that frictional instabilities are the primary source of the system's self-oscillation.


2011 ◽  
Vol 305 (3-4) ◽  
pp. 283-289 ◽  
Author(s):  
J. Paul Winberry ◽  
Sridhar Anandakrishnan ◽  
Douglas A. Wiens ◽  
Richard B. Alley ◽  
Knut Christianson

2008 ◽  
Vol 16 (6) ◽  
pp. 724-735 ◽  
Author(s):  
Yasushi Kojima ◽  
Shigemune Taniwaki ◽  
Yoshiaki Okami

2005 ◽  
Vol 42 ◽  
pp. 67-70 ◽  
Author(s):  
David M. Chandler ◽  
Richard I. Waller ◽  
William G. Adam

AbstractMeasurements of basal ice deformation at the margin of Russell Glacier, West Greenland, have provided an opportunity to gain more insight into basal processes occurring near the margin. The basal ice layer comprises a debris-rich, heterogeneous stratified facies, overlain by a comparatively debris-poor dispersed facies. Ice velocities were obtained from anchors placed in both ice facies, at three sites under 5–15 m ice depth. Mean velocities ranged from 20 to 43 m a–1, and velocity gradients indicate high shear strain rates within the basal ice. Stick–slip motion and diurnal variations were observed during measurements at short (1–5 min) time intervals. Vertical gradients in horizontal ice velocity indicate two modes of deformation: (1) viscous deformation within the stratified ice facies, and (2) shear at the interface between the two basal ice facies. Deformation mode 1 may contribute to the folding and shear structures observed in the stratified facies. Deformation mode 2 may generate the stick–slip motion and be associated with the formation of debris bands. Active deformation close to the margin suggests that structures observed within the basal ice are only partially representative of processes occurring near the bed in areas away from the glacier margin.


2017 ◽  
Vol 105 ◽  
pp. 103-112 ◽  
Author(s):  
Kirk Martinez ◽  
Jane K. Hart ◽  
Philip J. Basford ◽  
Graeme M. Bragg ◽  
Tyler Ward ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document